
AD-AO87 997 NAVAL RESEARCH LABS WASHINGTON DC F/6 9/2
SOFTWARE ENGINEERING PRINCIPLES. (U)

UL JL A0 L J CHMURA, P CLEMENTS, C L HEITMEYER

UNCLASSIFIED N

11111Z- l1.5~

1111.25 II jf1.

MICROCOPY RESO)LUTION 1LIST CHART

SOF 'WARE
ENGINEERING

PRINCIPLES
14 - 25 July 1980

Communicatlons Sciences Division
Naval Research Laboratory

Washington, D.C. 20375

'0S

I
Applie Sence Deportnt DGPttmwm of comuwv saw"c C.

dmi U.s. Nawal Academy ow
AiMapeli MD 21402 Wole of Contnuln UdusUOn

Nave PostgradU OnoMi
klev wy, CA 9 0 0

.......... ..A- A -

UNCLASSIFIED ~~R C! N
SECURITY CLASSIFICATION~ OF THIS PAGE (When Does Entered)

REPORT DOCUMENTATION PAGE 13FREDMLEIG O3

IREPORT NUMBER 1.GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S.TY qM P.10 --- RED

,OFTWARE 0ENGINEERING PRINCIPLESs, / I

~ 7 S. CONTRACT OR GRANT NUMBER(s)

]Iouis . , mr~4alClementsAkonstance
qeitmeyere'hlathryn L ./4 eninger, ,~stt7 'rrnas,
.,un E. 3ffML. -- avid 'Weijs_____________
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK
Information Processing Systems Branch (Code 7590) AREA II WORK UNIT NUMBERS

Naval Research Laboratory/OM P
Washington, DC 20375
Ii. CONTROLLING OFFICE NAME AND ADDRESS

Naval Research Laboratory oFA9
Washington, DC 2037565

14.MONTORNG GECY AMEIIIADA 61-I POP deff~nt"Oico) I.SECURITY CLASS. (of this report)

~ UNCLASSIFIED

- - -15a. DECL ASSI FICATION/ DOWNGRADING
SCHEDOULE

16. DISTRIBUTION STATEMENT (of this Report)
:Z

IB. SUPPLEMENTARY NOTES

Prepared in cooperation with Office of Continuing Education
Naval Postgraduate School
Monterey, CA 93940 ~C

IS. KEY WORDS (Continua on toers* side ifnfecoeewp and Identify by black nsiber)

Computer
Software
Computer Programming
Training

20. ABSTRACT (Continue on reverse side if necessary and identify by block nnbe)
-This is the notebook from the updated edition of the well-received course

originated by the Naval Research Laboratory (NRL) and taught annually for the
past five years. It is a two-week technical course for DoD personnel managing
a software project or designing software. The purpose of the course is to
improve the participant's ability to evaluate software requiremients, specifi-
cations, design, correctness, and maintainability. Its purpose is not to
transform the participant into an expert software designer.

DD ',*, 7 1473 EDITION OF I Nov 65 is 0950k.11y... UNCLASSIFIED
S/N 0 10 2-014- 6601 5q.ei'~..L.f~yiuRITY CLASSIICATION Of' INI PACK (When Date 3neaead

UNCLASSIFIED
.Lt.URITY CLASSIFICATION OF THIS PAGE(When Ddta Entered)

>The course concentrates on technical problems of software design. It intro-
duces generally accpeted design practices, as well as software design research
that may result in practical design practices in the near future. Topics
covered include program families, information-hiding modules, hierarchical
structures, abstract interfaces, formal specifications, responses to undesired
events, documentation, and cooperating sequential processes.,

.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(

1
Me DOM Aham

ContentsI

Preface v
Schedule vii

Section 1 GENERAL

.'".1 Course Overview 1-1
- Personal Experiences 1-9

GEN.3 The A-7 Project 1-13
GEN.4 The HMS Project 1-19
GEW.5 Pseudo-Code Language Description 1-25
GEN.6 Glossary 1-39
GEN.7 Course Review 1-51

Section 2 PROGRAM FAMILIES

PF.1 Program Families: What and Why 2-1
PF.2 MP as a Family of Programs 2-9
• PP.3 MP as a Family of Programs 2-13
PF.4 A Minimal Member of the NP Family 2-15

4*PF.5 A Minimal Meber of the MP Family 2-19
PP.6 Family Development by Stepwise Refinement 2-21
PP.7 Applying the Program Family Principle 2-37
PF.8 Design Decisions in HAS Requirements 2-47

*PF.9 Design Decisions in HAS Requirements 2-49

Section 3 UNDESIRED EVENTS

UE.1 Desired Responses to Undesired Events 3-1 Accessi-on Fr
UE.2 MP and UEs 3-13
*UE.3 1P and UEs 3-15 STI6 GFA&I
UE.4 Intermodule Interfaces and UEs 3-17 DDC TAB
UE.5 MP Intermodule Interfaces and UEs 3-23 Unannounced
*UE.6 MP Intermodule Interfaces and UEs 3-25 Justif c.ti I
UE.7 The Uses Hierarchy and UEs 3-27

Bv_

, .i'.L.

*Distributed during course

4

SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

CONTENTS

Section 4 INFORMATION-HIDING MODULES

MOD.l Decomposition into Modules 4-1
MOD.2 Change and the Original MP Modular Structure 4-11
*MOD.3 Change and the Original NP Modular Structure 4-13
MOD,4 Modular Structure of Complex Systems 4-15
MOD.5 MP Secrets 4-23
*MOD.6 MP Secrets 4-25
MOD.7 Change and the Improved MP Modular Structure 4-27
*MOD.8 Change and the Improved MP Modular Structure 4-29
MOD.9 Identifying HAS Modules 4-31

Section 5 SPECIFICATIONS

SPEC.1 What are Specifications? 5-1
SPEC.2 Using an Informal Functional Specification 5-15
SPEC.3 Formal Functional Specifications 5-17
SPEC.4 Coding Specifications 5-25

Section 6 ABSTRACT INTERFACE MODULES

ABS.1 Abstract Interface Modules and Their Value 6-1
ABS.2 Using the MP Abstract Interface 6-17
*ABS.3 Using the MP Abstract Interface 6-25

Section 7 HIERARCHICAL STRUCTURES

HIE.l Hierarchy Survey 7-I
HIE.2 Designing a Uses Hierarchy 7-13
HIE.3 Uses Hierarchy for an Address System 7-27

*HIE.4 Uses Hierarchy for an Address System 7-31

Section 8 LANIGUAGE CONSIDERATIONS

LANG.1 Language Selection 8-1

LANG.2 Ada 8-11

*Distributed during course

ii SOFTWARE ENGINEERING PRINCIPLES

14-25 July 1980

--

Contents

Section 9 PROCESS STRUCTURE

PROC.1 Process Structure of Software Systems 9-1
PROC.2 MP Process Structure 9-13

*PROC.3 MP Process Structure 9-17
PROC.4 Process Synchronization 9-19

Section 10 PROOFS OF CORRECTNESS

CORR.1 Introduction to Proofs of Correctness 10-1

Section 11 DOCUMENTATION

DOC.1 Documentation Guidelines 11-1

Section 12 MESSAGE PROCESSING (MP) SYSTEM

MP.1 The UGH Message Processing (MP) System 12-1
MP.2 MP Basic Modular Structure 12-7
MP.3 MP Detailed Modular Structure 12-13

*MP.4 MP Improved Modular Structure 12-33
*MP.5 MP Message Holder Module 12-37
*MP.6 MP Abstract Interface Module 12-49

Section 13 MILITARY ADDRESS SYSTEM (MADDS)

MADDS.1 The Military Address System (MADDS) 13-1
MADDS.2 MADDS Modular Structure 13-5

*MADDS.3 MADDS Modular Structure 13-7
MADDS.4 Using the Computer System 13-9
MADDS.5 Informal Functional Specifications for MADDS Modules 13-31
MADDS.6 MADDS Input Formats 13-51
MADDS.7 MADDS Output Formats 13-53
MADDS.8 MADDS Implementation Notes 13-55
*MADDS.9 MADDS Program Listings 13-57

*Distributed during course

SOVIWARE ENGINEERING PRINCIPLES iii
14-25 July 1980

CONTENTS

Section 14 HOST-AT-SEA (HAS) SYSTEM

HAS.1 The Host-At-Sea (HAS) Buoy System 14-1
HAS.2 HAS Data Acquisition and Transmission

Software: Program Design Specification 14-5
*HAS.3 HAS Improved Modular Structure 14-37
HAS.4 A Structured View of HAS 14-43
HAS.5 Academic Poppycock 14-65
HAS.6 Separation of Concerns 14-71
HAS.7 Implementing Processes in HAS 14-77

Section 15 EVALUATIONS

EVAL.1 Comment Sheets 15-1
EVAL.2 Course Evaluation 15-11

Section 16 BIBLIOGRAPHY

BIB.1 Bibliography 16-1

*Distributed during course

iv SOFTWARE ENGINEERING PRINCIPLES

14-25 July 1980

"-ww' :- I. T- - - - - ---
"

-..

Preface

Since 1973, the Information Systems Staff at the Naval Research Laboratory
(NRL) has studied many of the managerial and technical problems connected with
Navy software acquisition, development, and maintenance. One observation has
been that persons responsible for software could benefit greatly from training
in state-of-the-art software engineering technology. Another has been that a
better job of software design is essential if software is to meet requirements
and be maintained inexpensively. These two observations have led to the
course "Software Engineering Principles," which addresses some important
technical problems concerning software design. First taught in 1976 by NRL,
the course is now presented annually by NRL together with the Naval
Postgraduate School (NPS).

In "Software Engineering Principles," we introduce some important design
principles that encourage production of correct, understandable, and easily
changed software products. We also examine some software engineering research
that may result in valuable design principles in the near future. The course
will not turn you into an expert designer, but should improve your ability to
evaluate software proposals, progress, and products. You should also better
appreciate design approaches, design problems, and ongoing research.

Coverage of each course topic typically involves lectures, examples,
exercises, sample solutions, and exercise discussions. The schedule is
rigorous; therefore, we recommend that you sumarize the major points raised
in each lecture and exercise discussion. We encourage you to ask questions if
you are having trouble isolating the major points of a topic or if you are
confused by details. You should also challenge statements or sample exercise
solutions that seem in eror or that do not match your experience. In the
past, student questions have led to many lively discussions, cleared up some
hidden confusions, and sometimes resulted in changes to course materials.

The following persons have prepared this year's materials.

Louis Chmura
Paul Clements

Constance Heitmeyer
Kathryn Heninger
Jack Littley
David Parnas
John Shore
Janet Stroup
David Weiss

Daniel Jamerson and John Laine of CTEC, Inc. have idapted the course's
programing assignment to the Naval Academy's computing environment.

SOFTWARX ENGINEERING PRINCIPLES V
14-25 July 1980

-.- - t i_

PREFACE

Much of the material derives from earlier versions of the course. Louis
Choura, Kathryn Heninger, David Parnas, John Shore, and David Weiss, together
with the following persons, developed those versions.

Honey Elovitz
John Guttag
Richard Hamlet
Cynthia Irvine
Rodney Johnson
Rudolph Krutar
Michael McClellan
Pam Mayo
Lee Nackman

Barbara Trombka
Helen Trop

Max Woods and Ruth Guthrie of NPS's Department of Continuing Education

have handled numerous administrative matters connected with the course. The
task of making the local arrangements for the presentation of the course in
Annapolis has been the responsibility of Gary Westbrook of the Naval Academy.

Preparation of the notebook has been in the general charge of Janet Stroup
who was ably assisted by Georgine Spisak, Sarah McCray, and Eleanor Walker.
Their work was facilitated by the use of previous versions of the materials
prepared by Msea. Stroup, Spisak, and Deborah Hatfield.

"Software Engineering Principles" originated as part of the NRL's Software
Engineering Project, which the Naval Electronic Systems Command originally
funded under Program Element 62721N, Task XF21-241-021.

vi SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

L

I.a
S
U
a
Cr

U*

SW

0

S

____ _ Yr

rz~ ~ z.. ____ tA~ I -

Schedule

Day 1, Monday, 14 July 1980

Kind of Relevant Session
Time Topic Session Material Leaders*

0800-0830 Registration aJS

0830-0930 Course Overview Lecture GEN.1 DP

0930-0945 Break

0945-1015 Personal Experiences Exercise GEN.2 DW

1015-1045 Results of Exercise Discussion DW

1045-1100 Break

1100-1130 The A-7 Project Lecture GEN.3 DP

1130-1200 The MMS Project Lecture GEN.4 CH

1200-1315 Lunch

1315-1415 Program Families: Lecture PF.1 CH
What and Why

1415-1430 Break

1430-1530 The UGH Message Processing Reading and MP.1 CH, FR
(MP) System discussion

1530-1545 Break

1545-1615 MP as a Family of Programs Exercise PF.2 CH

1615-1645 Results of Exercise Discussion PF.3 CH

Pseudo-Code Language Homework GEN.5
Description

*CR: C. Heitmeyer DP: D. Parnas DW: D. Weiss EN: E. Newhire

FR: F. Rat JLS: J. Stroup JS: J. Shore KH: K. Heninger
LC: L. Chmura OD: 0. U. DeZeeman PC: P.'Clements

SOFTWARt ENGINEERING PRINCIPLES vii
14-25 July 1980

-| 7:

SCHEDULE

Day 2, Tuesday, 15 July 1980

Kind of Relevant Session
Time Topic Session Material Leaders

0800-0830 A Minimal Member of the Exercise PP.4 CH
MP Family

0830-0900 Results of Exercise Discussion PF.5 CHI

0900-0930 Pseudo-Code Language Discussion GEN.5 DW
Description

0930-0945 Break

0945-1045 Desired Responses to Lecture UE.1 DW
Undesired Events

1045-1100 Break

1100-1130 MP and UEs Exercise UE.2 DW

1130-1200 Results of Exercise Discussion UE.3 DW

1200-1315 Lunch

1315-1445 Family Development by Lecture PF.6 CH

Stepvise Refinement

1445-1500 Break

1500-1530 Applying the Program Lecture PP.7 CHI
Family Principle

1530-1630 Decomposition into Modules Lecture MOD.1 DP

MP Typical Modular Homework MP.2
Structure MP.*3

viii SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

_______Schedule

Day ~.Wrdn",!av. 1b July 1980

Kind of Relevant Session
Topic Session Material Leaders

MP' lypi~hs Modular Discussion MP.2 DP

4Structai- mp.3

"' io kT .,i!'k,,, i tTie (nr ig i na 1 Exercise MOD. 2 DP
MP' Mm !i i lr Struicture

09R-,1o e!I It; t.Ft,- Exri S(Discussion MOD.3 DP

0945-04- 01 To tr -r~i~ o e0f Lecti're MOD.4 DP

61045-!) Br'aI

1100-1130 1,!- Sec;.'t.; Exercise MOD.5 LC

1130-11- 9 't Exo~rcise Discussion NOD.6 LC

20 Lur'

1-!4 MP Improvt 1 l- hading MP.4 DP

>9 - ihange anw -io 1rniroved Exercise MOM. DP

AC B

0(~ - P s 1 5J(-s5-iB Discussion moD.8 DP

* §~~ ;'r, T. MLi~i~A~dt.~.'Reading and MDS1 L
Jvlitem MTw) discussion

'545-16!3 X nd~i.i! Striict:-ure Exercise MADDS.2 LC

151R-;Ul~ r'f F.urir Discussion MADDS.3 LC

,sn S~~L'~:.r5v ,tf- Houmework MDDS.4

14-X J':'19P'

).. 'wJrsday, 17 July 1980

Kind of Relevant Session

TO-iC Session Material Leaders

,) - Intermodule Interfaces Lecture UE.4 DP
and UEs

,0 -., i Break

' MP Intermodule Interfaces Exercise UE.5 LC
and UEs

1 Results of Exercie Discussion UE.6 LC

Break

.. What are Specifications? Lecture SPEC.1 DP

An Informal Functional Exercise SPEC.2 LC
Specification for the MP.5
MP Message Holder Module

1200-1343 Lunch (Guest Speaker: Dr. Harlan Mills, IBM)

1345-14.5 Results of Exercise Discussion LC

1415-1430 Break

i430-1600 Formal Functional Lecture SPEC.3 DP

Specifications

1600-1615 Break

1615-1730 Using the Computer System Terminal MADDS.4 PC

x SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

owa. . t a L s* ~ '

Schedule

Day 5, Friday, 18 July 1980

Kind of Relevant Session
Time SULi Session Material Leaders

0800-0900 Abstract Interface Modules Lecture ABS.1 is
and Their Value
(Part 1)

0900-0915 Break

0915-1015 Abstract Interface Modules Lecture ABS.l J.S
and Their Value
(Part 2)'

1015-1030 Break

1030-1130 Using the MP Abstract Exercise ABS.2 KH
Interface HP. 6

1130-1200 Results of Exercise Discussion ABS.3 KR

1200-1315 Lunch

1315-1415 Informal Functional Reading and -MADDS.5 LC
Specifications for discussion
MADDS Modules

1415-1430 'Break

1430-1530 Coding Specifications Lecture SPEC.4 is

1530-1545 Break

1545-1700 The Military Address Programming MADDS.1- PC
Sy stemn MADDS.9

Host-At-Sea (HAS) System Homework HAS.l

SOFTWARE ENGINEERING PRINCIPLES xi
14-25 July 1980

'(HEDULE

~6, Monday, 21 July 1980

Kind of Relevant Session
'rime Topic Session Material Leaders

1i-0900 Host-At-Sea (HAS) System: Reading and RAS.1 DP
Requirements Summary discussion PF.8

u9ou -0915 Break

C;-1015 HAS Program Design Speci- Reading HAS.2 DP
fications: HAS Data
Acquisition and
Transmission Software

)0'.",.1045 Evaluation of the Proposed Discussion HAS.2 DP
HAS Modular Structure

104>f 1100 Break

1100-1200 Identifying HAS Modules Exercise MOD.9 DW
HAS. 1
HAS .2

1200-1315 Lunch

1315-1415 Results of Exercise Discussion HAS.3 DW

1415-1430 Break

1430-1530 Hierarchy Survey Lecture HIE.1 DP

1530-1545 Break

1545-1700 The Military Address Programming MADDS.l- PC
System MADDS.9

xii SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Schedule

Day 7, Tuesday, 22 July 1980

Kind of Relevant Seas ion

Time Topic Session Material Leaders

0800-0930 Designing a Uses Hierarchy Lecture HIE.2 KH

0930-0945 Break

0945-1015 Uses Hierarchy for an Exercise H19.3 RE
Address System

1015-1045 Results of Exercise Discussion HIE.4 KH

1045-1100 Break

1100-1200 The Uses Hierarchy and UEs Lecture UE.7 iS

1200-1315 Lunch

1315-1415 Language Selection Lecture LANG.1 JS

1415-1430 Break

1430-1700 The Military Address Prograuming I4ADDS.1- PC
Sys tern MADDS.9

A Structured View of HAS 11omework HAS.4
pp. 14-43
thru 14-47

SOTWARE ENGINEERING PRINCIPLES xiii
14-25 July 1980

SCHEDULE

7__ .Wednesday, 23 July 1980

Kind of Relevant Session

Time Topic Session Material Leaders

(' -Y- 0930 Process Structure of Lecture PROC.1 KB
Software Systems

Oli3o-0945 Break

0-- .- 1015 MIP Process Structure Exercise PROC.2 KU

:-1045 Results of Exercise Discussion PROC.3 KH

~-1100 Break

1163-1200 A Structured View of RAS Reading and HAS.4, is
discussion pp. 14-43

thru 14-47

* 1200-116t5 Lunch (Guest Speaker: CDR Ron Ohiander NAVELEX)

1345-1515 Process Synchronization Lecture PROC.4 KB

1515-1530 Break

*1530-1 00 Academic Poppycock Reading and HAS.5 is

discussion

1600-1730 The Military Address Programmning MADDS. 1- PC
System MADDS.9

A Structured View of HAS Homework RAS.4
HAS.5

xiv SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Schedule

Day 9, Thursday, 24 July 1980

Kind of Relevant Session

Time Topic Session Material Leaders

0800-0845 A Structured View of HAS Debate HAS.4 EN, OD
HAS.5

0845-0930 A Structured View of HAS Discussion HAS.4 KH, JS

HAS.5

0930-0945 Break

0945-1045 Separation of Concerns Reading HAS.6 JS

1045-1100 Break

1100-1200 Ada Lecture LANG.2 DW

1200-1315 Lunch

1315-1445 Tntroduction to Proofs of Lecture CORR.1 JS
Correctness

1445-1500 Break

1500-1530 Implementing Processes Reading HAS.7 KH
in HAS

1530-1700 The Military Address Programming MADDS.l- PC
System MADDS.9

Implementing Processes Homework HAS.7
in HAS

SOTVAiZ ENGINEERING PRINCIPLES xv
14-25 July 1980

SCHEDULE

a) y 10?Friday, 25-July 1980

Kind of Relevant Session
*Time Topic Session Material Leaders

-)O0100 Implementing Processes Reading HS7KH
in HAS

040O0-0915 Break

0-1--1015 Implementing Processes Discussion HAS.7 KU
in HAS

5 -1030 Break

f-20 Documentation Guidelines Lecture DOC.1 KH

15 Lunch

135-/.5 Course Review Lecture GEM. is

1415--1, Break

1430-1530 Course Evaluation Evaluation EVAL.2 is

xvi sopTwARE EUGiUKRinG PRINCIPLES
14-25 July 1980

-~ - - - --- -

4

- b '4k

'S

a
N'
2
m
S

r

S.-

- __ __ & V

GEN. 1 Course Overview'

I. What is Software Engineering?

A. You already know programmning?

B. You already have languages?

C. What then are the special characteristics of software?

1. Nultiperson involvement

2. Multiversion production and maintenance

3. Handling of undesired events (UEs)

4. Usual coon additional properties

a. Machine "near" -machine dependent

SOFTWARE ENGINEERING PRINCIPLES -
14-25 July 1980

SEC. 1 / GENERAL

L. Large size

c. Efficiency, reliability important

1. Robustness important

TI. Characteristics of Well-Structured Software

A. Can 'le verified one part at a time

B. Can :e changed one part at a time

C. Can be read one part at a time and each part only once--
characteristics of both program and documentation, not just
documentation

D. Subsets work -- ability to tailor to actual needs

1-2 SOFTWARE ENGINEERING PRINCILES
14-25 July iQ.)

Course Overview / Doc. GEN.l

E. Meaningful error messages

F. Effective utilization of resources

G. Extensibility from outside

III. Characteristics of Badly Structured Software

A. In one eye and out the other (smart people)

B. Must remember many arbitrary facts to understand code changes

C. Modification requires changes in unpredictable places

D. System integration a real effort

IV. Various Times at which Decisions are Made, e.g.,

A. Early design time

SOTWARE ENGINEERING PRINCIPLES 1-3 .

/ 14-25 July 1980

22 : L.NERAL

B. -gram writing time

~ietime

P.~~ Vtime

time

V. i: Postponemient

VI. Three Sccnfare Structures

A. MoOcle structure

B. Program-uses structure

C. Processa structure

1 -4 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 18

Course Overview / Doc. GEN.1

VII. The Meaning of Abstract and the Use of Abstractions

VIII. Goals of this Course: After You Finish, You Should

A. Be better able to recognize bad software design

B. Be able to recognize good software design

C. Be able to recognize contractor BS, snow, run-around, incompetence,
etc.

D. Be able to evaluate contractor performance

E. Have a sense of the state of the art in software engineering

IX. Non-Goals of this Course

A. You will not be a system designer

B. You will not be a super programmer

SOFTWARE ENGINEERING PRINCIPLES 1-5
14-25 July 1980

7 -7- - --- .-- r

-t S 0 " s 'ph, 5jct software methodology

-;OA1. -
"

:opi t aire- -x!,:ple ,

- ; "
, GEN. 1)

sat tL- handed out during course (e.g., MADDS.9)

-c ription (GEN.5)

-~~T TAT C,(i'~~

rs- , eit Ons

R4' :,7.hy t'BTlW2!

' " ' .'.s v , i l a b l e

I p:*e-,nc's fr each section

ieaL .. Pp. vii-xvj)

ec r,

SOFTWARE ENGINEERING PRINCIPLES

14-25 July 1980

Course Overview / Doc. GEN.1

b. case studies

c. exercises (collected)

d. discussions

3. Relevant materials

4. Session leaders (e.g., DP)

5. Programming assignment (time allocated)

6. Guest speakers

SOFTWARE ENGINEERING PRINCIPLES 1-7
14-25 July 1980

GEjN .2 Personal Experiences

EXERCISE

Name:____________

This exercise gives you a chance to relate the topics mentioned in the

overview lecture to your own experiences in software development.

Briefly describe your experiences, if any, for the situations listed below.
Some of you will be asked to relate your "war stories" during a discussion
period that follows.

1. Describe a situation in which a small change in the requirements
resulted in many changes all over a system.

2. Describe a situation in which a subset of an existing system was

needed, but it was not possible simply to remove the unneeded parts -

rewriting was necessary.

HUINOII PA=I sLAKit-na L~A

SOFTWARE ENGINEERING PRINCIPLES 1-9
14-25 July 1980

i. Describe a situation in which the information that you needed in order
to understand one module in a system was finally found somewhere else
in the system documentation.

1. : - ibe a situation in which a decision that was made when a system

w s specified could and should have been postponed until assembly time
or run time.

In SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

7W-1-

Personal Experiences / Doc. GEN.2

SOME ANSWERS IN RESPONSE TO GEN.2

Question 1. Describe a situation in which a small change in the requirements
resulted in many changes all over a system.

1. "In 1976, it was requested that the Order of Merit System (at USMA) be
dropped in favor of an alphabetical graduation scheme. This seemingly

simple administrative decision required not only a complete overhaul of
the term end processing system, but also impacted many seemingly unrelated
areas -- such as the Army promotion list for the new graduates which was
found to be based on the order of merit, also the branch drawing system --

based on order of merit."

2. "Requirement to utilize an optional H/W control selection to compensate

for system level malfunction needed only single bit manipulation in H/V to
effect. Result was 9 S/W module changes, some redesign in S/W because --
some S/W hard coded element not expecting it to ever change, some S/W read
data base item and then overwrote it in S/W, some SIW got data base item
from wrong place -- this was found 3 years after deployment and was costly
to correct -- large documentation cost incurred."

3. "This example perhaps describes the converse of the question, i.e., a
small change was not done because the overall impact was too costly. The

simple change was to 'hard copy' upon operator command the results of menu
changes on a CRT-like device. The program was designed such that the
change required a pulling apart of the display code and restructuring it
to accomplish the desired result."

Question 2. Describe a situation in which a subset of an existing system was
needed, but it was not possible simply to remove the unneeded
parts -- rewriting was necessary.

1. "USMA wanted to implement the Air Force 'CIAPS' system of providing
procurement support to H's local procurement division. The 'AF' CIAPS
system consisted of approximately 167 programs of which 'we' needed 16.
Resulting problem was that CIAPS was developed for their base level
Burroughs 3500 -- we were configured on H6000 -- and planning a conversion
to Univac 1110. Rewrite was decided upon -- using the CLAPS programs as a
basis."

2. "It was desired to update a sequential file using tape, as well as cards.
However, because the formats of the input cards and tapes differed so
greatly (several tape records - i card record) it was simpler to write a
whole new program rather than try to incorporate the new requirement into

the existing program."

SOFTWARE ENGINEERING PRINCIPLES 1-11
14-25 July 1980

4-i

SI/ GENERAL

"In develorin. a program for an agency which must communicate on TADIL-B,
it was not lprtsible to use an existing module which does TADIL-B

=r--ssn -fTh ther agency. This has happened repeatedly. For every
vW.",' -gencv vjhtcit uses TADIL-B, there is a unique TADIL-B processor."

. . '>*s ri~'a situation -n which the information that you needed to
,j:" -i- tand one module in; a system was finally found somewhere
el- i.the system documentation.

::ita i , - occurred in an EW system where parameters required by a
- atrnltyiq, program which interacted with a number of distributed original
-O.tC3srS ,-- tot specified in the documentation of the main control
,gram. ALL .-! the distributed programs had to be examined to understand

.:ersV9 being used and what the specific functions of the
.itrolling pt.,?ram were.)'

*.stem docurrc-_iition included a statement that read 'S+A=P pg 33Wrth'
wh,ch nearit. p,- a3 in Wirth's book, Structure Plus Algorithms Equals

!r ams.

3. -' ,d Nh-4v personnel strength projections performed with a simulation
mac '.,,js written to perform certain processes sequentially, and
ttr. . ,-,, :hared coon routines, i.e., rounding routines, random
nu., .z -: ,:: , etc. In documentation, the descriptions of the common
routines were spread out throughout system's description."

2uestion 4. a-. s situation in which a decision that was made when a
system was specified could and should have been postponed until

I y time or run time,

1. "A data reduc"..on system for handling A-7 flight data had to be able to
handle fligh,: '. corder outputs from several different OFPs (Operation
Flight Prc- .-: , . The same variables were often in different positions on
the different tapes. The programmer introduced an ungodly number of flags
and complic- ed bi-anching logic in order to handle all the 'special
cases."'

2. "Memory size of TRIDENT Command and Control system has grown throulghout
system development with impact on the executive and in many cases cn the
subsystem modules. It would appear that memory allocation could have been
generalized :n the development process and then after total requirements
were known, memory allocation could have been determined."

3. "'Because hardware must be procured at the beginning of development, no one
can tell if it is sufficient for the job. Only after compilation (just
i-ca efficient is that compiler anyway?) should the exact amount of
h arwc= bc' ",ten. At the very least, some experimental coding must be
done .y'

t-12 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

AtV

GEN.3 The A-7 Project

LECTURE

I. Problems with Tactical Software for DoD Aircraft as Seen by lavy's A-7
Maintainers

A. Mostly unstructured assembly language code

B. Little documentation

1. Design and analysis documents were not purchased from the

contractor or have not been maintained

2. The reasons for doing things have been lost

C. Additions and deletions are risky

1. Almost impossible to assess impact or magnitude of a change

2. Ripple effect

SOFTWARE ENGINEERING PRINCIPLES 1-13
14-25 July 1980

i_,_,' GENERAL

3. Personnel making a change must understand entire program

otal program must be retested

D fficult to validate

No independent statement of the requirements except the code

eliability always unknown

E. Training of personnel is difficult, requiring about 1 year before a

significant contribution can be made

II. Claimed Benefit of Software Engineering Principles is Well-Structured

Software

-- can be verified one part at a time

-- can be changed one part at a time

-- can be understood one part at a time

1-14 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

~The A-? Pro ject / Doc. GE.N.3

Il . Questions

A. Why doesn't the DoD use software engineering Principles?

1. No Convincing test

2. No models to emulate

B. Would the DoD benefit from well-structured programs? How can wefind out? -- By building and using one.

C. Is it feasible to follow software engineering principles whilebuilding embedded systems with tight memory end time constraints?Hov can we find out? -- By building an operational system and
following the principles.

D. How much memory and execution time does good structure cost? Howcan we find out? -- By comparing two equivalent programs, one withgood structure, one without.

E. What if we fail?

I. Learn why

SOMTiAKU VGINERINC
PRINCIPLES

14-25 July 1980

;. / GENERAL___________________________ ______

'- "~~ r-.'ahing non-truth

ta. operational flight program for the Navy's A-7

the following principles

PROBLEMS

Low Valida- Train- Require-
Level Poor Change ton ing ments

",_MP Code Doc. Risky Hard Hard Change

Rec _ "X X X

In forma. x X x X X
Modules

Abstract Irte: iaves, X X x X

Coop-pating S,-uential X x X
Pcocesses

Process Synchrr.ac, 'rc n X K X
Primitives

Uses Hierarchy X K X

Resource Monitor Modules X x X

Formal Specifications X

Di,- iplined Programming X X X X

2.o-i Verification x X

I -, !,SOFTWARE ENGINEERING PRINCIPI 'S
14-25 July 1980

The A-7 Proiect / Doc. GEN.3

B. Stages

1. Define requirements, August 1978

2. Redesign program, November 1980

3. Rebuild program, July 1982

4. Undergo Naval Weapons Center (NWC) acceptance tests# November
1982

5. Compare new program to old, January 1983

C. Status

1. Software requirements specification for the A-7E aircraft

SOFTWARE ENGINEERING PRINCIPLES 1-17

14-25 July 1980

* I

SEC. I / GENERAL

2. Publication of specification methodology

3. High-level design documentation for new A-7E program

4. Interface specifications for device modules: model of abstract
inter face methodology

5. Specifications for virtual machine

D. Influence on this course

V. References

Heninger, K. L. 1980. "Specifying Software Requirements for Complex

Systems: New Techniques and Their Application." Trans. on Software
Engineering, vol. SE-6, no. 1, pp. 2-13.

Heninger, K. L.; Kallander, J.; Parnas, D. L.; and Shore, J. E. 1978.
Software Requirements for the A-7E Aircraft, Naval Research
Laboratory Memorandum Report no. 3876.

1-18 SOFTWARE NGINEERING PRINCIPLES
14-25 July 1980

GEN.4 The MMS Project

LECTURE

I. History of Message System Development in DoD

A. Military crises in late 1960s led to several Congressional
investigations into military communications

B. Problems of military message systems uncovered by Congress

1. Delayed message delivery

2. Human errors

3. Lack of standardization

SOFTWARE ENGINEERING PRINCIPLES 1-19
14-25 July 1980

-... No iii~i

SEC. I /GENERAL__________________ _______

Congressional directives regarding future message system development

Centralized approach

Greater standardization

~sof expected cost savings

Development

aintenance

3. Documentation

4. Training

1-20 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1480

The MMS Project / Doc. GEN.4

II. The Military M ssage Systems (MMS) Project

A. One message system will not suffice for DoD

I. Some organizations require special functions

2. Varying organizational procedures and preferences

3. Different computer hardware

4. Different terminals

5. Different incoming message volumes

6. Different message storage requirements

SOFTWARE ENGTNEERING PRINCIPLES 1-21

14-25 July 1980

AI- -. _ _

Si:C. I / GENERAL

B. In future years, DoD will need several message systems with many
coirinon features but many differences as well

.ct goal: Develop a family of military message systems using
2nt software engineering principles

:ovide useful product to DoD

emonstrate the application of software engineering principles
to a complex problem area in DoD

family methodology

requirements definition techniques

C. abstract data types

d. information-hiding modules

-2 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

MEW-

The MKS Project / Doc. GEN.4

e. abstrict interfaces

D. Stages

1. Requirements specification for family

2. Design specification for family

E. Status

1. Investigation of existing family members (HERMES, SIGHA, NMIC-SS)

2. Form shopping list

3. Requirements document

a. organization

SOFTARE ENGINEERING PRINCIPLES 1-23
14-25 July 1980

-7,EC. 1 / GENERAL

b. functions

C. primitive operations

d. security analysis

TIT. Qiestions

A. Ts it feasible to follow software engineering principles when
building a set of systems with a wide range of characteristics?

B. Do the claimed benefits apply to large, complex systems or are they
confined to small, simple programs?

IV. Reference

Heitmeyer, C. L.; and Wilson, S. H. 1980. "Military Message Systems.:
Current Status and future Directions." IEEE Trans. on Comunications,
to be published.

1--24 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

GEN. Pseudo-Code Language Description

LECTURE

I. Introduction

Algorithms appear both in the lectures and in the material contained in
this notebook to illustrate the concepts being introduced. These algorithms
are abstract programs presented in a language similar to ALGOL and FORTRAN.
This document describes the meanings of some of the language constructs.

II. General Comments

The language described below requires that all keywords be underlined.
Keywords and operator symbols are listed at the end of this description. (See
Tables 1-3.)

Identifiers are character strings of any length; special characters and
numbers are permitted but identifiers must start with an alphabetic character
(a-z).

All variables must have their data type declared. Variables must also
be identified as local (private) or global to the routine in which they are
used; subprogram parameters must also be identified (see Section IV).

Statements must end with a semi-colon. Statements can appear anywhere
on the line (free field); several statements may occur on one line separatedI by semi-colons.

Character and string constants may be specified by enclosing the string

or character in quotes ("a").

* 1. Assignment statement

Example: x:- y;

Explanation: :- means assignment. The variable x. is assigned the value
represented by y.
Note that the statement must end with a semi-colon.

SOFTWARE ENGINEERING PRINCIPLES 1-25

14-25 July 1980

fe*

SEC. I / GENERAL

1. Comment statement

Example: comment This is a comment statement;

Explanation: Comments are prefaced by the keyword comment. All text
between the keyword and the next semi-colon is assumed to be
the commuent text. Comments may be longer than one line.

3. Statement labels

Example: labelname: x:- y; comment any statement may have a label

associated with it;

Explanation: Statement labels are represented by an identifier followed
by a colon appearing before the statement being labeled.
Note: Since this language does not have a "go to", labels
are used as explanatory phrases.

4. Compoud statements

Example: begin comment All the statements enclosed between begin and

end comprise a compound statement;
x: = y;
y:= z * 3;
label: temp:= y+5*x;
first: = 1; second: = 2; comment three statements on one line;

end;

Explanation: A compound statement is a way of grouping several statements

together; each statement is then executed sequentially.
This is accomplished by enclosing the statements between

begin and end. Any legal statement may appear within the

tein-end pair.
Note: Whenever a compound consists of a single statement

the begin and end may be omitted (see 5. below).

General form:

begin
stm 1;
stm 2;

stm n;
end;

wnere each stm i is a legal statement.

1-26 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Pseudo-Code LanguageDescription /Doc. GEN.5

5. If statement

Example: if x gt y
then x:- y;
else ys x;
end-if;

Explanation: The if statement is used to test for a specified condition.

In the above example, this test is for x greater than y. If
the condition is true, the then part of the statement is

executed. If the condition is false, the else part of the
statement is executed. The else part is optional; if this
part does not appear, execution continues with the next
statement.

General form:

if logical expression
then compound
else compound

end-if;

where logical expression is any expression resulting in a true or false
evaluation and compound is as defined in 4 above. (Note that in the preceding
example, the compound statements each consist of a single statement with the
begin-end pair omitted.)

6. While statement

Example: while x le y do

begin
z:= AM;
x:= x+2;
i:f x;

end;
end-while;

Explanation: The while statement is used as a looping construct. As long
as the expression following the while is true, the compound
statement is erecuted.

General form:

while logical expression do compound end-while;

where logical expression and compound are as previously explained.

SOFTWARE ENGINEERING PRINCIPLES 1-27
14-25 July 1980

SEC. I / GENERAL

Case statement

Example: case getmsgtype(message) of

//ship//
begin comment This compound statement is executed when the

value of getmsgtype(message) is ship;
shiprec: = shiprec + I;
report request:= true;
end;

//air//
begin comment This compound statement is executed when the

value of getmsgtype(message) is air;

airrec:- airrec +1;
report request: = true;
end;

//history//
b comment This compound statement is executed when the

value of getmsgtype(message) is history;

historyrec: = historyrec + 1;
report request: ff true;
end;

end-case;

Explanation: In the above example, mnemonic names enclosed in double

slashes (//) are used to represent different situations and

their values.

The statements following the matched //name// field are then executed.

General form:

case arithmetic expression of

//expression 1//
compound

//expression 2//
compound

//expression n//
compound

end-case;

wher(. the value of arithmetic expression matches one of the expressions

-i... ;.sed in slashes. When there is no match, execution continues after the

enld-case.

SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Pseudo-Code Language Description /Doc. GEN.5

8. For statement

Example: for I:= J step K until N do

A[I]:- I+1;
B[I] :- A[I+l];

end;
end-for;

Explanation: The for statement provides a looping construct with para-

meterized step size. The loop variable I is initialized to
J and incremented once for each traversal of the loop by

the step value K until I is greater than the upper bound
variable N. Each execution of the loop executes the

instructions within the begin-end pair.
Note: This statement is equivalent to

I:= J;

while I le N do

begin
A[I]:- A[I] + 1;
B[i1:- B[I] + 1;

I:- I + K;
end;

end-while;

General form: for var: = expression step expression until expression do

compound end-for;

where var is a variable, expression is an arithmetic expression and

compound is as previously explained.

IV. Data Types and Declarations

All variables must be declared. Declarations identify the variable's

type and scope (see Section V). A variable may be private to the routine
where it is used, it may be a global variable, or it may be a parameter to
the routine.

1. integer, real, and array

Example: integer x;
real y;
real reell, reel2;
integer array z[l:101;
coimment The following declaration defines a two dimensional

array. Indices for the first dimension may take on
values from I to 15, for the second dimension from 0 to
30;

real array twodimensions[l:15, 0:30];

integer intl, int2, int3;

SOFTWARE ENGINEERING PRINCIPLES 1-29
14-25 July 1980

SEC. I / GENERAL

Explanation: integer indicates that the variable or variables following
may assume only integer values.
real indicates that the variable or variables following may
assume only real values.
integer array declares an array variable to be an array of
integers. The array's dimensions are enclosed in brackets;
lower bounds and upper bounds must both be indicated for
all dimensions. All bounds must be integers. Arrays may
be of any legal type: integer, real, character, string,
semaphore (see below), etc.

Multidimensional arrays are declared by separating the
dimensions by commas.

a le: boolean x;

boolean x, y, z;

x:,',atJon: boolean variables are variables that may have only one of
two possible values -- true or false.
Boolean is synonomous with logical.

3. sring and character

Example: string str;
character char;

Explanation: String variables contain alphanumeric information. Such
statements as str: = "TRIS IS A STRING ASSIGNMENT"; are
permitted provided str is declared a string.
Character variables may contain only one character and are
equivalent to strings that are restricted to length one.

4. buffer

Example: integer buffer buf;

real buffer buf2;
string buffer bufstr;
integer buffer array buf[1:51;
real buffer array buf[5:12];

Explanation: Buffer variables hold information of a specified data
type. For example, integer buffer buf; means that buf

holds integers. The only legal operations on buffers are
accept and deposit. Accept removes one unit of informa-
tion from the buffer specified; deposit places one unit of

1-30 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

............. .. - - -- --

Pseudo-Code Language Description / Doc. GEN.5

information into the buffer specified. The unit of
information is determined by the buffer's type. After
accept, the buffer has one fewer item; deposit causes the
value to be copied into the buffer. A buffer is a first-in
first-out storage device. The number of spaces actually

available in a buffer are specified at system generation
time (details of the specification are not relevant here).
Buffer space management is handled by the accept and
deposit operations and is transparent to the buffer user.

Accept (deposit) may result in delays of the programs using
it when a buffer is empty (full).

Examples of the use of accept and deposit follow. Assume that buffer buf
has previously had a value deposited.

integer buffer buf;
integer item;
accept (item, buf);

end;

The above example causes one integer from buffer buf to be removed from buf
and placed into item; buf contains one less integer.

begin
character buffer array buffl:51;
integer int;
character char;
int: f 2;
char:= 'a';
deposit (char, buffint]);

end;

This example causes the character in char to be placed in the second buffer
of the buffer array buf. The contents of char are unchanged.

5. program and procedure

Example: procedure proc(x,y,z);
program proc2(synch);
reentrant procedure reentproc(a);
integer procedure intproc(x,y,z);

Explanation: A procedure is a means of grouping together often-used code
(sometimes called a subroutine); each time the procedure is
called, the code is executed. If the procedure is a
function (i.e., it returns a value), its declaration

specifies the type of the returned value.

SOFTWARE ENGINEERING PRINCIPLES 1-31
14-25 July 1980

7-

mm . a

W

SEC. I / GENERAL

A program is used to specify the sequence of events
within-a process, i.e., the program defines the process.
Several processes may be controlled by the same reentrant
program (see below).

Reentrant procedures (reentrant programs) are procedures
prg:9 written in such a way that several processes

may use the procedure (program) simultaneously. To
accomplish this, the code must be separate from all data
that is changed during execution. The code is shared but
each process has its own copy of changeable variables.

Parameters to procedures and programs are enclosed in parentheses and
separated by commas. Parameters must be declared within the procedure or
program body to be of type parameter.

All declaration within ;i procedure or program must precede the executabel

;tr tements.

Example: procedure proc(x,y,z);

parameter inteper x;
parameter real .;

parameter strin_& z;

Procedres are called as in ALGOL by using the procedure name and a list
of parameters enclosed in parentheses.

Note that there is no restriction on the data types of parameters so

procedure names may be passed as parameters to other procedures.
Consequently, the following -ratements may occur:

procedure proc(parr-vc' x,y);
parameter procedu parproc;

6. semaphore

Example: semaphore semi;

semaphore array semfl:lO];
semaphore array semfl: 51;

Explanation: Semaphore is a variable type designed for the synchroniza-

tion of processes that are proceeding in parallel at unknown
speeds. Just as semaphores in railway systems are used to
inform one train of the activities of another, semaphores
in computer systems are used to inform one process of the
activities of another.

1-32 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Pseudo-Code Language Description / Doc. GEN.5

There are only two legal operations on semaphorcs possible -- P and V;
examples of their use are:

P(seml);

V(seml);

P and V are operators defined by Dijkstra for th data type semaphore.
The P operation is used in a "Pass" attempt. It "lowers" the semaphore and a
process may have to wait until the semaphore is passable. The V operation
"raises" a semaphore to signify that a "Pass" attempt should be allowed to
complete.

A semaphore array is a set of semaphores with the same name; they are

distinguished by an integer subscript, e.g., sem[1], just as array elements.
Semaphore arrays may only have one dimension unlike integer, real, or other
types of arrays.

The major use of semaphore arrays occurs in descriptions of reentrant
processes requiring different semaphores for different instances.

V. Scopes

The scopes of all variables must be declared. There are three possible
scope declarations.

I) parameter

2) global
3) private

Examples: procedure proc(x);
parameter integer x;
global integer y;
private integer z;

Explanation: parameter indicates that t1,e variable is a parameter to the

procedure; global indicates that the variable is global to
the procedure; private indicates that the variable is
private (local) to the procedure.

SOFTWARE ENGINEERING PRINCIPLES 1-33
14-25 July 1980

L

SEC. I / GENERAL

Table 1. Statement-relevant keywords

Keyword Use

bei indicates start of compound statement

end indicates end of compound statement

case indicates start of case statement

//item// indicates compound statement in a case statement that should
be executed if the arithmetic expression matches the item

of part of case statement

end-case indicates end of case statement

comment indicates comment statement

for indicates start of for statement

Sindicates the step value

until indicates the upper bound

end-for indicates end of for statement

if indicates start of if statement

then indicates start of the part of if statement to be executed if
the expression is true

else indicates start of the part of if statement to be executed if

the expression is false

end-if indicates end of if statement

infinite used for the largest number that can be represented

null used to represent a null value, nothing (different from zero)

true logical value (type boolean)

false logical value (type boolean)

while indicates start of while statement

do part of while statement

end-while indicates end of while statement

1-34 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

__________~ -m-vm

Pseudo-Code Language Description / Doc. GEN.5

Table 2. Declaration-relevant keywords

Keyword Use

array declares a variable to be an array

boolean declares a variable to be a logical variable that may
take on the values true or false

buffer declares a variable to be a buffer

buffer array declares a variable to be a specified number of buffers

character declares a variable to be a character

global declares a variable to be global

integer declares a variable to be an integer

parameter declares a variable to be a parameter to a procedure

private declares a variable to be local to routine

procedure procedure heading declaration

program program heading declaration

real declares a variable to be a real

reentrant declares a procedure to be reentrant

semaphore declares a variable to be a semaphore

semaphore array declares a variable to be a specified number of
semaphores

string declares a variable to be a string

SOFTWARE ENGINEERING PRINCIPLES 1-35
14-25 July 1980

SEC. / GENERAL

Table 3. Operator symbols

)Prator symbol Meaning

logical operator or

111d logical operator and

logical operator not

:!t e_al logical operator not equal

logical operator equal

logical operator less than

logical operator greater than

logical operator less than or equal to

logical operator greater than or equal to

assignment operator

multiplication operator

+ addition operator

subtraction operator

/ division operator

** exponentiation operator

indicates end-of-statement

indicates end-of-label-identifier

()parentheses used to alter precedences or enclose
parameter lists

used to separate identifiers in declarations or
parameter lists

brackets used to enclose array indices and
semaphore array indices

indicates a string or character constant

1-36 SOFTWARE ENGINEERING PRINCIPLES

14-25 July 1980

______"_ -. - • - - "

Pseudo-Code Language Description / Doc. GEN.5

Table 3. (continued)

Operator symbol Meaning

P semaphore operator to request a "Pass"

V semaphore operator to permit a "Pass"

accept buffer operator to remove one item from a buffer

deposit buffer operator to put one item into a buffer

SOFTWARE ENGINEERING PRINCIPLES 1-37

14-25 July 1980A __ ___ ___ ____ ___ ___ ___ ___ ___ ___

IjtN. (Glossary

Abstract a) as a verb (e~g., "to abstract from a representa-
tion") __ to ignore certain details in making a
description or model Of some object.
b) as an adjective (e.g., abstract interface) -- an
abstract 'T" is a model of X that omits certain
details of X. Because certain details are not taken
into consideration the abstraction represents many
possible versions of the object that differ in the
ignored details.

Abstract data type (First, see Data type.) A class of variables that
includes more than one data type. A description of an
abstract data type describes the common properties of
several data types. For example, 'arithmetic' is an
abstract data type that includes 15 bit and 30 bit
integers as well as floating point numbers. Some
authors consider an abstract data type to be a data
type whose implementation is hidden from users, who
see only the type's abstract behavior.

Abstract interface A model of an interface that is valid for more than
one actual interface. All statements made about the
abstract interface must be true of all of the actual
interfaces that it models.

Abstract program A program that is incomplete; some details necessary
to have it run are omitted. It represents all programs
that could be obtained by supplying the missing details
in a way consistent with the incomplete description.

Access functions A set of programs-available to the users of a module
that gives the users use of the facilities provided by
the module.

Address space The set of data item addresses that a program can use.

Algorithm A precise description of possible sequences of opera-
tions. The algorithm is conditional if the sequence
of actions depends on the data provided as input to
the algorithm. The algorithm is non-deterministic if
more than one sequence of operations is allowed for
fixed values of the input data.

~EcWMN jpAaS BLANK-NoT nl'JD

SOFTWARE ENGINEERING PRINCIPLES 1-39
14-25 July 1980

SEC.I /GENERAL

B

~fer A storage device used to transfer information between
system components. The buffer allows the information
producers and the information consumers to proceed
async- nously. Producers insert items into the
buffei consumers remove items from the buffer. The
system components need not wait for the others unless
the buffer is full or empty. Sometimes the word
"buffer" is used to mean a first-in-first-out (FIFO)
buffer.

C

.tiug specification A coding specification for a given program is a
document in which "pseudo-code" or abstract programs
are used to constrain the selection of algorithms and
data structures or to specify them completely. What-
ever the extent of the constraints imposed, the coding
specification should contain all information Cor
references) required to write complete and correct
code for the program.

Critical section A portion of a program that should not be executed
simultaneously by several processes. One process
entering a critical section must exclude other
processes from entering the same section until the
first process has left (known as mutual exclusion).

D

Data type A class of variables (information holders) that can be
used as operands for a connon set of operators. For
example, '8 digit integer' is a data type that can be
used as an array index. .Some authors define data type
as a set of values together with a set of allowed
operations. (See also Abstract data type.)

Deadlock A system state in which a set of processes ceases to
make progress because each member of the spt is
waiting for some other member of the set to complete
some action.

1-40 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Glossary /Doc. GEN.6

Decision postponement Progress in design is made by making decisions.

Because early decisions are harder to reverse than
later decisions, making decisions that are likely to

be reversed later should be avoided. In decision
postponement, decisions unlikely to be reversed are
made to allow progress while waiting for the
resolution of uncertainties. Abstraction is one

method of decision postponement.

Design decision At the start of a software design project, many
programs are possible. As each interface is defined,
statements written, etc., the set of possible products

is reduced until, at the end, only one program remains.
Each act that reduces the set of possible products is

a design decision.

E

Embedded computer A computer system that is part of a larger system and
system must meet interfaces that are primarily determined by

characteristics of the system in which it is embedded.

Extensible languages Conventional languages provide a set of built-in
features such as boolean variables and while state-

ments. By means of subroutines or procedures one user
can extend the facilities available to another user.

These extensions are easily distinguished (in syntax,
efficiency, and 'safety') from those features that are
built into the language. An extensible language
allows a user of the compiler to provide new features
that can be used with the same efficiency and safety
as those that were built into the compiler.

F

Fail-soft A system is referred to as having fail-soft features

if the occurrence of an undesired event (such as a
hardware failure) results in a partial reduction of

services rather than a total failure.

Family A computer family is a set of computers with enough in

coumon that it pays to study their common properties

before looking at individual models. A program family
is a set of programs with enough in coon that one
begins by studying the comon properties and then
proceeds to look at one or more of the family members.
An abstract program is one way of representing a
program family.

SOFTWARE ENGINEERING PRINCIPLES 1-41

14-25 July 1980

SEC. I / GENERAL

FIFO A first-in-first-out (FIFO) queuing discipline is one
in which items inserted into the storage device first
are extracted from the device in the order inserted.

Formal specification A statement, by means of mathematical axioms in a well
understood mathematical notation, of the requirements
that a module must meet.

Wunction Used in three distinct senses in this course: a) the
role that a system fulfills is often termed the
system's function; b) the access programs of a module
are often called functions, after FORTRAN (see also
Access function); and c) a function is a aathematical
mapping from a domain into a range. The syntax
portion of formal specifications describes the domain
and range of each access function.

H_

Hierarchy A binary relation on a set of objects defines a
hierach of those objects if the relation is loop

free. (See also Level.)

I

Information-hiding A set of programs that allows other programs to use a
module data structure or algorithm without having those other

programs be sensitive to changes in the data structure
or algorithm. The other programs use access functions
that can be implemented in a compatible way for all
allowable changes to the data structure or algorithm.
The data structure or algorithm is termed the secret
of the module. Equivalently, a module refers to a set
of programs written by part of a programmer team.

Modules being built by more than one person will them-
selves be divided into modules. In other discussions

you may find "module" being used to mean separately
compilable portions of a program, separately callable
portions, or separately loadable portions of a program.
We reserve the use of the word for portions of a
program that are written independently. A module may
consist of more than one subroutine or macro, the
usual case in this course.

1-42 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Glossary / Doc. GEN.6

Interface The set of assumptions that one program makes about

another program. If program A violates the assump-
tion(s) that program B makes about it, program B will

not work properly. An interface may include assump-
tions about data structures, entry points, calling

sequences, etc., as well as more subtle assumptions

about the effects of the programs involved.

L

Level Proper use of the word "level" in describing a soft-

ware system depends on the definition of a loop-free
binary relation between the components of the system.

Call that relation R. If the relation R holds between
cl and c2 then R(cl,c2) - true. Level 0 is the set of

components c such that there is no component d such
that R(c,d) = true. Level i is the set of components

c such that a) there is at least one component d in
Level i-l such that R(c,d), and b) if R(c,d) then d is

in a lower level than i. The "real meaning" of level
depends on the relation R, which should always be

specified before using the terms "level" or
"hierarchy."

M

Macro definition Associating a name with a program segment known as the
body of the macro. The macro name can be used. as an
abbreviation for the body. Some macro systems allow

the definition of the macro body to be conditional.

Macro expansion The process of taking a program text containing occur-

rences of the name of the macro (also called calls on
the macro) and replacing those calls with the associ-

ated bodies. This-process is called expansion because
usually the body consists of more characters than the
nam, so that the text becomes longer. That need not
be rlie case. Sometimes a macro name may be 'expanded'
to an empty string.

Memory allocator A component of a software system that determines the

location of sections of code and data in main memory
and mass storage devices.

Module See Information-hiding module.

SOFTWARE ENGINEERING PRINCIPLES 1-43

14-25 July 1980

-' I / C;-NERAL

L(t .r An information-hiding module in a software system that
supervises the use of a given resource. All resource
requests and resource releases are made by calling one
of the module's access functions. If parallel
processes are sharing a resource the monitor synchro-
nizes their activities.

Computing on a system in which there are several

programmable hardware units in use simultaneously. In
normal usage, the term means that there are several
CPU's although it can also be applied to systems in
which there is one CPU and a set of peripheral

programmable units such as channels or front-end
processors.

YIv : n ;r!ng Computing on a system in which a single progranmable
unit is used to execute a number of tasks that proceed
independentty of each other. In normal usage this

refers to systems in which several user jobs may be
in the midst of execution simultaneously by intermit-

tent use of a single processor; the term may also be
applied to systems in which several processes belong-
ing to the same user job can be in the midst of
execution simultaneously. (See also Process.)

Mutual excl,.- See Critical section.

0

0 functionsj The access functions of a module may either change
V functions the information in the module or reveal (return)

information stored by a module. Those that change the
stored information are called operator functions or
O-functions. Those that return information are called
value functions, or V-functions. O-V functions that
do both types of services are possible.

P

P & V The operators defined by Dijkstra for the 'k- type
semaphore (see definition of semaphore). The P
operation is used in a Pass attempt. A process may
have to wait until the semaphore is passable. The V

operation signifies that a Pass attempt should be
allowed to complete.

1-44 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

_ _ _ _ _ _ _ _ _ '

Glossary / Doc. GEN.6

Predicate A property that may be true or false of some object or
ordered tuple of objects. For example, green is a
predicate that may be true or false about some object.
Greater-than is a predicate that can be defined on
pairs of numbers, so that for any specific pair of
numbers it will be true or false. Complex predicates
are defined in terms of boolean expressions and
simpler predicates.

Procedure The Algol term for a closed subroutine. Some pro-
cedures correspond to FORTRAN function subroutines and
have a value so that they may appear in expressions.
(See also Function.)

Process A subset of the events in a system. We may describe
one or more processes by means of a program that deter-
mines the sequence of events. If the system consists
of more than one process, the sequence of events in
different processes may be determined by the timing of
outside events, the relative speeds of devices, sched-
uli ng algorithms, etc. This leads us to say that the
relative speeds of processes should be considered
unknown. (See also Sequential process.)

Program A specification of an algorithm in a form sufficiently
complete either to be executed directly on a computer
or to be translated mechanically into a directly execu-
table form. The notation used to specify the algorithm
is called the programming language. If programs
written in the language can be executed directly on the
computer without translation, the language is called a
machine language, and the programs are called machine
language programs. For languages that are not machine
languages, a program, called a translator, that trans-
lates from the language into machine language is
usually supplied. Most programming languages allow
the programmer to divide a program into independently
executable components. The component in which execu-
tion starts is called the main program. Other compo-
nents are called subprograms or subroutines. A method
of executing subrourine3 is supplied by the programming
language (the call statement in FORTRAN, the call and
perform statementi in COBOL). A subprogram is executed
by calling (or invoking) it. In process structured
systems, a program is used to determine the sequence
of events for a process, and execution may begin con-
currently in several programs (see also Process). A
set of programs grouped together for the purpose of
concealing a design decision is called an information-
hiding module. (See also Information-hiding module.)

SOFTWARE ENGINEERING PRINCIPLES 1-45
14-25 July 1980

17-1-

GENERAL

ode A program that is not machine executable but is
intended to describe the main steps in an algorithm.

The software designer can concentrate on the design of
an algorithm because the pseudo-code is not as tightly

constrained as a real programming language might be.

A first-in first-out storage device. In some
documents, queue is used in a more general sense to

refer to any mechanism capable of storing a set of
objects. In that case, the speaker or writer must

identify the discipline used for access.

R

The "reader/writer problem" is one of the standard
problems in process synchronization. It refers to a

situation in which several processes wish access to
the same data item. Readers do not interfere with

each other and may use the item simultaneously.
Writers are updating the item and require exclusive

access so that they do not interfere with each other
or with readers. Computer science literature contains

numerous discussions of this problem.

Ready/running/ The set of states of a process from the point of

blocked view of a processor allocator (scheduler). If a
process has been allocated by a processor it is

running. If it is waiting for some event that will
be caused by another process, e.g., a resource
becoming available, it is blocked. Processes that are
not running or blocked and are waiting for a suitable

processor to become available are called ready.

Real-time software Software in which the programming must take "hard"

real-time deadlines into account. A deadline is
considered "hard" if the system will be considered to

have failed if it delivers the needed results after

the deadline.

Redundancy The use of more information than the min-.um needed to
describe some situation fully. The extra information
is redundant in that it can be computed from other

information already supplied. Redundancy is necessary
to check for the existence of errors. The more redun-
dancy the greater the class of errors that can be
detected and corrected.

S--4 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

....... ...

Glossary / Doc. GEN.6

Reentrant procedures A procedure written in such a way that several
processes or jobs may use it simultaneously. To
accomplish this, the code must be separate from all
data that is changed during execution. The code is
shared but each process or job has its own copy of
changeable variables.

S

Secret of a module See Information-hiding module.

Semantics The effect of executing a program or construct.
Operational Semantics describes the effect by
describing a possible implementation using programs
that are assumed to be understood. Abstract Semantics
describes the effect in terms of externally visible
changes in the values of variables or the behavior of
other programs.

Semaphore A type of variable designed to facilitate the
synchronization of processes that are proceeding in
parallel at unknown speeds. Just as semaphores in
railway systems are used to inform one train of the
activities of another, semaphores in computer systems
are used to inform one process of the activities of
another. See P & V.

Separation of Refers to a method of simplifying the work of a
concerns designer or analyst by having him concentrate on just

one aspect of a problem rather than try to deal with
all aspects at once. For example, one would want the
development of numerical algorithms to be separate
from concern with memory allocation policies.

Sequential process A process is a sequential process if the sequence of
events in the process is~ determined by the algorithm
describing the process rather than by the relative
speed of other processes.

Sequencing decisions A subset of desi,u 'kc sions. A design decision is
termed a seqiencing decision when it reduces the
r 'sile sequences 'f events that could occur in the
system.

Specification A statement of the requirements that a module must
satisfy.

SOFTWARE ENGINEERING PRINCIPLES 1-47
14-25 July 1980

- - - -iaw

1. / GENERAL

,k A last-in first-out storage de'uice. Only the most
recently inserted item can be read. When the most

recently inserted item is removed, the item that could
be read previously can be read again. The name is
derived from the analogy of a stack of trays in a
cafeteria. Only the top-most tray is visible.

.ref nc. t The process of programming by first writing abstract
programs in which parts are named but not implemented,
and then implementing those parts. The implementation
may call on programs that are named but not yet imple-
mented. The process stops when all unimplemented
programs have been refined to calls on implemented
programs or macltine instructions.

L. . t~ The enforcement of timing constraints on parallel
processes whose relative speed is unknown. If an
event in process A cannot properly occur before an

event in process B, A and B must be synchronized.

The set of rules that determine what is a legal

program in a language. Knowing the syntax of a
language, one can tell whether or not a given program

has a meaning but one cannot tell what the program
does. The description of the effect of the legal
programs is termed the semantics of the language.

T

Trap A deviation from the normal flow of control of a
program caused by the detection of some err,r

(undesired event) in the execution of the program.
For example, if the execution of a divide command in
a program results in overflow, a trap occurs and a
special routine for responding to that situation is
invoked.

U

Undesired events (UE) An error, such as a hardware or software er:ov,

incorrect or inconsistent data, user error, etc.

Uses relation Given program A with specification Sa and program B,

we say that A uses B if A cannot satisfy Sa unless B
is present and satisfies some non-trivial specifica-
tion Sb. The assumed specification Sb may differ
for different users of B.

1-48 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Glossary /Doc. GEN.6

V

Variable An information holder. The information held is stored
and retrieved by means of access operators. Variables
are often referred to by means of identifiers.

Virtual machine A set of programs and data structures that can be used
as if they were implemented in hardware. to meet this
requirement it must be impossible for programs that
use the virtual machine "instructions" to alter the
programs that implement those instructions or subvert
the resources used in their implementation.

Virtual memory A mechanism that makes it possible for programs to
use addresses that are different from physical memory
addresses. The mechanism must function in such a way
that the behavior of the program is absolutely
independent of the actual memory address except for
possible delays in time.

SOFTWARE ENGINEERING PRINCIPLES 1-49
14-25 July 1980

GEN. 7 Course Review

LECTURE

I. Characteristics of Well-Structured Software

A. Can be written one independent part at a time

1. Writing later parts doesn't require rewriting earlier parts

2. Writing based on fixed, written specifications and assumptions

-- reduces need to communicate or negotiate

B. Can be verified one part at a time

C. Can be changed one part at a time

D. Both program and documentation can be read one part at a time

MZZ)O pAg BL &-NOT n u

SO1fWARE ENGINEERING PRINCIPLES 1-51
14-25 July 1980

S-- __ _ _- ,,,_

SEC. I / GENERAL'

E. Subsets give ability to tailor software according to needs and
resources

F. Effective utilization of resources

II. Groundwork for a Flexible Design -- Describe More than Functional
Requirements

A. Possible changes -- systems can't be flexible in every way

B. Desired response to undesired events -- part of desired behavior but
it helps to think about it separately

C. Useful subsets

III. Dividing the Systa into ModuK-, s

A. Review of modules

1-52 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

L
. . . .'I i .

Course Review /Doc. GEN.7

B. Hiding secrets based on expected changes

C. Finding good work assignments

D. Iterating for submodules

E. Other benefits of modularity

F. Examples from HAS

IV. Identifying and Specifying the Access Programs for Modules

A. Review of interfaces

B. Abstract interface modules

SOFTWARE ENGINEERING PRINCIPLES 1-53
14-25 July 1980

* 3EC. 1 / GENERAL

C. General module interfaces

Y). Examples from HAS

I. Identifying Internal Programs

A. Part of the work assignment

B. Internal programs may be functions or process definitions

C. Examples from HAS

VI. Designing the Uses Hierarchy

A. Based on expected subsets

B. Based on implementation and testing considerations

1-54 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Course Review Doc.__GEN.7

C. Based on degradation considerations

D. Example from HAS -- see diagrams (pp. 1-58 to 1-60)

VII. Expressing Module Interfaces and Program Designs

A. Informal specifications

B. Formal specifications of module interfaces

C. Abstract programs for functions and process definitions

D. Examples

VIII. Processes

A. Could be executed in parallel

SOFTWARE ENGINEERING PRINCIPLES 1-55
14-25 July 1980

SEC. 1 / GENERAL

B. Capture major sequencing decisions

C. Allow changes in configuration

. Review in Terms of Basic Priciples

A. Information hiding

B. Separation of concerns

C. Being explicit about design decisions

D. Deferring design decisions

E. Program families

1-56 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Course Review / Doc. GEN.7

F. Discipline in design

Discipline in documentation

Discipline in programing

SOFTWARE ENGINEERING PRINCIPLES 1-57
14-25 July 1980

SEC. I / GENERAL

Level
4 roundrobin

1 (SCH)

3 accept, deposit desk clerk
(NO) (TIM)

2V P

(MO) (MO)

make ready processor
(SCH) allocate

(PA)

0 front, rear, successor priority insertp removep
(BUF) (SCR) (SCR) (SCH)

1-58 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

4-- -_ _ _ _ _ _ _ _ - - -1

Course Review / Doc. GEN.

Level

4 sensor reader intermediate averager

(IG) (IG)

3 desk clerk deposit accept
(TYM) (MO) (MO)

2 P v
(MO) (MO)

I I
t I

I i
0 etfcn okfcn

(Sc) (Sc)

B

gnFTWARE ENGINEERING PRINCIPLES 1-59

14-25 July 19 -;

SEC. 1/ GENERAL

Level

.14 rcvr message interpreter
(CC) TMi)

3 releasercvr,acet
c'btainrcvr deposit

0 tune signal- eom, fetmsgtype,
(RC) detected, char findloc

receive (ME) (MF)
(RC)

C

1 -60 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

.1 I

I ___

PF. 1 Program Families: What and Why

LECTURE

I. Definition: A set of programs will be called a program family if they
have so much in common that it pays to study their co mon character-

istics before investigating the special properties of individual
programs.

II. Hardware Analogy: System/370.

Ill. Typical Program Family: the various versions and releases of a
manufacturer's operating system.

IV. Why do large organizatiors so often have sets of programs with similar
functions?

A. Different parts of an organization develop programs with similar

purposes without knowledge of each other.

B. A program developed on the basis of one set of constraints turns out
to perform poorly under other conditions and is too hard to adjust.

SOFTWARE ENGINEERING PRINCIPLES 2-1
14-25 July 1980

.7

SEC. 2 / PROGRAM FAMILIES

C. General program is late in development; emergency project produces
(special case for immediate use. Incompatibilities result in long-

term existence of system intended only as a temporary measure.

D. A program developed for a large installation turns out to be
impractical or even unusable for a small one.

E. A program developed for a small installation turns out to be unable
to make effective use of the resources of a large installation.

F. One user wants services which were not anticipated by the developers
of an earlier system.

G. Different computers.

H. "I can do it better."

2-2 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Program Families: What and Why / Doc. PF.l

V. What are the disadvantages to an organization of having a set of
similar, independently developed systems?

A. Incompatibilities lead to duplication of interfacing programs.

B. Maintenance personnel get confused by false similarities and
misleading or superficial differences.

C. Organization-wide changes must be incorporated in each system.

D. Increased costs for storage, documentationg etc.

E. Effort to improve must be distributed and cannot be shared.

VI. What are the disadvantages to an organization of having programs which
were not designed to change?

A. Some changes are made poorly.

SOFTWARE ENGINEERING PRINCIPLES 2-3
14-25 July 1980

SEC. 2 / PL3GRAM FAMILIES

B. Some ci.anges cannot be made at all.

C. Maintenance and improvement costs are higher.

D. Readiness is iLpaired because of long completion times.

VII. Purpose of simultaneous development of a set of programs. (Program

Family Development)

A. Maximize what they have in common.

B. Min;mize th2 differences.

C, Local.ze hr c 4 f'res.

sduc,, dev lopr,[IL .. Zs . s Ar tn rJ sioln

2- b ,i El'TW RING PRINCI; LBS
14-25 July 19

-- a -- - 4Lu. ,., u " ,. . J -_ . ,E, . ti,' --.. , - -.. .

Program Families: What and Why /Doc. PF.1

~ (E. Reduce maintenance costs by sharing among versions.

F. Reduce documentation costs, training costs, etc.

VIII. Aow can the members of a programi family vary?

A. Programs can be functionally identical but make different resource
trade-ofifs.

B. Programs can be identical except for size parameters.

C. Programs can be subsets of the same super program and/or subsets of
each other.

PD. Pi grams cqn be bui!' on a common "base" (kernel) but provide
JiffereliL US' C interfaceL. h- :-eet va rying needs.

.Pro,rarns an have i rcnmot "facade" but a differenL base.

QOFTVARL ENGIM~ERING PRINCI : t12-54I 14-2:) July 1980

- - -- WC

ILA~ 4,-- -

SEC. 2 / PROGRIM FAMILIES

Ix. Sequential completion versus abstract design.

A. Why is the order of design decisions significant?

B. Decision trees.

Start Root

0

2

3

9 8

1 234 5

Figure 1 - Representation of develop- Figure 2 -Representation of program
aMII by sequential completion. Note: development using "abstract

*Nodes 5 and 6 represent incomplete decisions."
* programs obtained by removing code

f-onr nrogram 4 in ireparation for
-- uding programs 1, 8, and 9.

I: qvmbrls: Iis the set of initial possibilities;

is the incomplete program;

Xis the working program.

2-6 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

-7V
to - ~ -- ~

Program Families: What and Why / Doc. PF.1

C. What possible orders have been proposed?

I. Outside in (top down).

2. Bottom up.

3. Most solid first.

D. Implications of thinking about the family -- how to tell good
structures from bad.

X. Reference

Parnas, D. L. 1976. "On the Design and Development of Program Families."

IEEE Trans. on Software Engineering, vol. SE-2, no. 1, pp. 1 -9 .

SOFTWARE ENGINEERING PRINCIPLES 2-7
14-25 July 1980

PF.2 MP as a Family of Programs

EXERC I SE

Name:

Answer each of the following questions by giving a list of brief reasons.

1. Why might different versions have different memory requirements?

2. a. List some reasons why we cannot assume the same type of terminal to be

used in all MP installations.

b. List several common properties, i.e., universal properties, that we
can assume will be true of all terminals that will be used.

FRCIZNG FAG BLAN-NOT F 11&ALD

SOFTWARE ENGINEERING PRINCIPLES 2-9
14-25 July 1980L _

SEC. 2 / PROGRAM FAMILIES

3. Why might we have to use different programming languages for different
versions?

4. Why might the information included in the logs be different in differentversions?

I

2-10
SOFTWARE ENGINEERING PRINCIPLES

14-25 July 1980

MP as a Family of Programs /Doc. PF.2

5. Why might there be different operator interfaces on some versions of MP
than on others?

SOFTWARE ENGINEERING PRINCIPLES 2-11

14-25 July 1980

L . -7------------- - 7

PF. 3 MP as a Family of ProgramsCilG M3 F

EXERCISE SOLUTION

The following answers are just some of the possibilities.

1. Why might different versions have different memory requirements?

* Different numbers of users to be served.

* Different response characteristics (dependent on minimum acceptable
response time, AUTONOYS message load).

* Different rates of incoming and outgoing message volumes.j

* Retention time for messages.

* Functional capabilities chosen.

* Internal message conventions.

2. a. List some reasons why we cannot assume the same type of terminal to be
used in all MP installations.

* Mobile terminals must be special ruggedized versions.

* Some users may want inexpensive terminals.

* Some users may want quiet terminals.

* Some users may want sophisticated terminals.

* May be required to use terminals already on ships.

Different print speeds.

b. List several common properties, i.e., universal properties, that we
can assume will be true of all terminals that will be used.

* Accept characters one at a time and display them.

Send characters one at a time.

Will have letters A-Z and numbers 0-9 and no others can be
assumed; cannot assume a character encoding.

SOFTWARE ENGINEERING PRINCIPLES 2-13
14-25 July 1980

SEC. 2 / PROGRAM~ FAMILIES

3. Why might we have to use different programming languages for different
versions?

* The CPU's specified may not have any one language in common; writing a
compiler is considered too expensive.

4. Why might the information included in the logs be different in different

versions?

* Different user requirements.

* Different number of entries in the log.

* Different methods of operation for the organization accessing the logs.

5. Why might there be different operator interfaces on some versions of MP
than on others?

Different operator terminals (i.e., CRT or hard copy).

* Different standard manual operator procedures that are wanted to be

preserved.

* Different levels of operator skills (sophisticated, naive).

* Different captains on board may require tailored interface.

2-14 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

*

PF. 4 A Minimal Member of the MP Family

EXERCISE

Name:

Document MP.1 described a "family" of full service message processing

systems designed to be useful in demanding situations. The task of producing

family members is inherently difficult and the programs are inherently large.

Examine the list of design decisions below and describe the smallest

member of the family, Small MP (SMP), that could operate with reduced computer

facilities and still provide some useful lervices. Describe the situations in

which SMP could be used. Please assume thv MiTONOYL message conventions will

be used.

The minimal, useful member of a family is not necessarily more powerful

than previous manual procedures. Think of it in terms of:

a. a trivial software system that can gradually be extended to the

full-blown version by adding programs, and

b. a backup capability in case a large part of the computer goes down,

making it impossible to run the full version any more.

By looking for such subsets, you can avoid an all-or-nothing approach during

both development and operation.

I. The MP software can produce messages in the following formats: (The MP

alternative is marked by "**.")

a. simple formats incompatible with existing ones,
**b. AUTONOYS,

c. AUTONOYS plus error-correcting codes,
d. any format, because there is general message-definition facility.

2. Because some AUTONOYS channels are noisy, an HP does the following:

a. nothing, it accepts anything it sees (hears?),

**b. checks for errors and notifies operator,

c. checks for errors and makes "likely" corrections,
d. uses formal error-correcting codes for all single, double, ..., errors,

e. checks for errors and initiates auto retransmit when they are found.

SOFTWARE ENGINE"IP PRINCIPLES 2-15

14-25 July 1980

SEC. 2 / PROGRAM FAMILIES

3. An MP "screens" incoming messages as follows:

a. it does not screen incoming messages, but merely accepts all,
b. accepts only messages matching a built-in set of addresses,

**c. accepts only messages matching an updatable watch list,

d. accepts messages based on interactions with a centralized system that
locates persons.

4. An MP routes messages as follows:

a. the operator supplies routing information for each message,
b. operator-supplied routing information is checked against internal

constants,
**c. the software automatically supplies routing indicators using an

indicator list that the operator can update,
d. the software automatically supplies routing indicators using an

indicator list that is updated by AUTONOYS.

5. Possible processor configurations for supporting an MP are:

a. no processors are used, there are only teletypes and hard-wired
recognizers,

**b. a single UGH-20,
**c. 1 single UGH-VAN,
**d. a single UGH-2PIE,

e. combinations of b, c, and d.

6. An MP handles message traffic as follows:

a. serially, one message at a time,
b. in parallel, with many messages stored in core,

**c. in parallel, using both core and mass storage to prevent loss of any

message.

7. An MP retains messages as follows:

a. not at all, no messages are retained,
b. core copies are retained until space is needed,

**c. all messages are retained for a fixed period of time,
d. all messages, old ones are archived.

2-16 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

A Minimal Member of the MP Family /Doc. PF.4

8. An operator can get information about messages as follows:

a. by requesting a dump of core and mass memory,
b. by supplying a special code or message ID,
c. by supplying content information in a rigid format,

**d. by using a flexible query language.

9. Software support for the operator interface consists of the following:

a. minimal, the operator simply reads information printed at the console
and types in complete messages,

**b. there is a prompting package for message input by the operator, and

there is the RMD option,
c. there is a general text processing package usable for all aspects of

system operation.

10. There is the following capability for on-line testing of an MP:

a. none, any testing of an MP must be done off-line,
**b. there is test generation and transmission controllable by the operator,

c. there is auto test and evaluation,
d. there is auto test and fault correction.

SOFTWARE ENGINEERING PRINCIPLES 2-17
14-25 July 1980

PF. 5 A Minimal Member of the MP Family

EXERCISE SOLUTION

SMP, the new, small member of the MP family, would print any messages it

received on a terminal, buffering messages if necessary.

SMP would not

i. provide redundancy checks or error correction,

2. screen messages for relevant ones,

3. check or add any routing information,

4. assist in preparation of messages,

5. retain messages after printing them,

6. provide any information retrieval or automatic logging, or

7. perform any self checking.

SMP would be useful for producing hard copies of messages that were
received at a relay point connected by high quality transmission facilities to
the sender. The hard copy could then be manually scanned, distributed, and
logged.

SMP would be useful in developing and testing MP. It would provide
minimal service in the event of a casualty to part of the computer.

.

FRE(E;DiI PAGE BLlaL-NOT MAik.ID

SOFTWARE ENGINEERING PRINCIPLES 2-19
14-25 July 1980

PF. 6 Family Development by Stepwise Refinement

LECTURE

I. Review of the Decision Tree Representation of the Family Development
Process

I. Dijkstra's Primc Number Program Development*

A. Decisions: one thousand primes, compute before print

begin variable table p;
fill table p with first thousand prime numbers;
print table p;

end;

B. Debate about the order of decisions -- should one design "table" or
an algorithm "fill with first thousand prime numbers"

*The original notation of thir algorithm has~ oeii '-anged slightly in order

to be consistent with the abstract programming language presented in GEN.5.

ECEIiO EpAa BL9jK-NOT Fli-kD

SOFTWARE ENGINEERING PRINCIPLES 2-21
14-25 July 1980

SOFTWARE ENGINEERING PRINCIPLES. (U)

UNCLASSIFIED JUL 80 L J CHMURA, P CLEM4ENTS, C L HEITP4EYER N

In-EEEEOEE

111121.0

11111-5 1.41 II

MICROCOPY RESGIUTION iLST CHARI

SEC. 2 / PROGRAM FAMILIES

III. Wulf's KWIC Index Program*

A. Stage I PRINTKWIC

Design decisions:

It

B. Stage 2

PRINTKWIC:

generate and save all interesting circular shifts;
alphabetize the saved lines;
print alphabetized lines;

end;

Design decisions:

C. Stage_3

PRINTWIC:

begin
comment generate and save all interesting circular shifts;

for each line in the input do

begin
generate and save all interesting shifts of this line;
end;

end-for;
alphabetize the saved lines;

print alphabetized lines;
end;

Design decisions:

: The original notation of this algorithm has been changed slightly in order

to be consistent with the abstract programning language presented in GEN.5.

2-22 SOFIWARI SWIUKEKIUM G PRINCIPLES
14-25 July 1980

Family Development by Stepwise Refinement / Doc. P.6

IV. Development of the Memory Allocator Family of Programs by Stepvise
Refinement

A. Stage 1

typel BESTYET, CANDIDATE;

type2 ACTUAL;

boolean NOTALLSPACESCONSIDERED, BETTERSPACEMIGHTEXIST,

BEST YET:- null;

while NOTALLSPACESCONSIDERED and BETTERSPACEMIGHTEXIST do

CANDIDATE:-FN NEXT ITEMFRMRESPCLIT

BESTYET:-n BESTOF(BESTYET, CANDIDATE);

end;

end-while;

if (BESTYET -null) then ERROR ACTION end-f

ACTUAL,. m RAGMENT(BESTYET);

ADJUST(BESTYET,ACTUAL);

ALLOCAT'(ACTUAL);

end;

Note: typel and type2 are ways of declaring variables without actually speci-
fying the type. See section on design decisions not made in Stage 1.

SOFTWARE ENGINEERING PRINCIPLES 2-23
14-25 July 1980

SEC. 2 / PROGRAM FAMILIES

1. Assumptions made to verify that the above is correct

a. The memory is initially divided into frames of different
sizes. A-request is always for an amount of memory no
greater than one frame. When memory areas are returned to
the list of free spaces, adjacent sections of the same frame
will be coalesced. The amount of space requested will be
known to the program.

b. BEST YET is a variable that indicates an item from the list
of free spaces. Null, a possible value of BEST YET,
indicates no item.

c. BETTER SPACE MIGHT EXIST is a boolean va-iabie that is true
as long as it is possible that a "better" space can still be
found. The criteria for "better" have not yet been
specified.

d. NOT ALLSPACESCONSIDERED is a boolean variable that is true
until the loop has checked each free space once.

e. CANDIDATE is a variable of the same type as BEST YET.

f. FIND NEXT ITEM-FROM FREESPACELIST iq a function that
:e'urns P value that indicate; one of the items on the free
space list. If there are n items on the list, a sequence of
n function calls of the procedure will deliver each of the n
items once.

g. Adding new items during program execution will not occur.

2-24 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Family Development by Stepwise Refinement /Doc. P7.6

h. BEST OF is a procedure that takes two variables of the same
type at BEST YET (i.e., typel) and returns the better of the
tvo according to some unspecified criterion. If neither is
suitable, null is returned.

i. ERROR ACTION is a procedure that perform@ the action that
should be performed if no suitable space can be found.
ERROR ACTION does not return control to this program except
at the beginning.

j. type2 is a class of variables that can describe a storage
area.

k. FRAGMENT is a procedure that retnsn a variable of tue
after the procedure determines which parc of the free space
should be allocaLed. The free space is identified by the
parameter.

1. ADJUST is a procedure that adjusts the list of free spaces

to reflect the allocation. The parameter BEST YET indicates
which ite-i is to be removed from the list. ACTUAL describes
the amount of space to be allocated in case the unused
fragment of the original space is to be left on the list.

a. ALLOCATE is a procedure that gives the storage area to the
requesting program.

SOFTWARE ENGINEERING PRINCIPLES 2-25
14-25 July 1980

=NOMA"

SEC. 2 / PROGRAM FAMILIES

2. Stage I design decisions

a. No items will be added to or removed from the free space
during execution of the program until the final selection
has been made.

b. Once execution of the program begins, no other execution of
it will begin until the executing program is completed
(critical section).

c. The only other program that might change the data structures
involved is one that adds items to the free space list when
space is returned.

d. The program that adds free spaces to the list compacts two
or more contiguous free spaces that are part of a frame into
one space represented by a single item on the list.

e. A candidate is not removed from the list while it is being
considered.

f. Before the search begins, there is no check to determine if
allocation is pc-s4 ble (e.g., check for empty free space
list, citeck fo: size of larTest available space).

3. Design decisions not made in Stage 1

a. The representation of the free space list.

2-26 SOFTWARE ECIIGIKoIUG PRINCIPLEs
14-25 July 1980

Family Development by Stepvise Refinement / Doc. PF.6

b. The type of the variables BEST-YET, CANDIDATE and ACTUAL.

c. The order in which the free spaces are stored on the list.

d. The order in which the items on the free space list are
searched.

e. The criteria used in BESTOF.

f. The decision to allocate all of the space found or allocate
only that part needed, (i.e., tie attion taken in FRAGMNT).

g. The ERRORACTION that will be takon.

SOFTWAR ENGINEERING PRINCIPLES 2-27
14-25 July 1980

SEC. 2 /PROGRAM FAKILIES

B. Stage 2

integer BEST YET, CANDIDATE, V;

boolean BETTERSPACEMIGHT-EXIST;

type2 ACTUAL;

BEST YET:-n 0;

CANDIDATE:-n 0;

* while (CANDIDATE it N) and BETTERSPACEMIGHTEXIST do

CANDIDATE:- CANDIDATE + 1;

BEST YET:- BESTOF(BESTYET,CANDIDATE);

* end;

end-while;

if BESTYET =0 then ERRORACTION end-if;

ACTUAL:~- FRACMENT(BESTYET);

ADJUST(BEST YET, ACTUAL);

ALLOCATE(ACTUAL);

end;

1. Stage 2 design decisions

a. The list of free spaces is represented by a table with N
entries. Each entry represents a valid free space. TheI
first space searched is identified by entry 1 and the last
space searched is identified by entry N.

2-28 SOTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Family Development by Stepwibe Refinement /Doc. PF.6

b. The variables BEST YET and CANDIDATE are integers (that will

be used as array indices) so that the test for NOT ALL
SPACES CONSIDERED can be an integer test on the value of
CANDIDATE.

c. BETTER SPACE MIGHT EXIST is a boolean variable that is true
as long as it is possible that a "better" space can still be

found. If it is set to false, that will be done by BESTOF.

2. Design decisions not made in Stage 2

a. The characteristics that describe an item in the free space

list (e.g., starting address and length, or starting address
and end address).

b. The order in which the entries are stored on the list.

c. The relation of the variables CANDIDATE and BEST YET to the
items in the free space list.

d. The policy or selection criteria in BEST OF.

e. The decision to allocate all of the space found, or allocate
only that part neee, o ar, 'eave the rest on the free space
list.

SOFTWARE ENCTIURING PRINCIPLES 2-29
14-25 July 1980

___ __ __ __ __ __ __ __ __ __ __ __-_ ,,,

SEC. 2 / PROGRAM FAMILIES

C. Stage 3

b .ninteger BEST YET, CANDIDATE,N, T, REQUIREDLENGTH, OLD T, I;
integer array LAST[l:N], STAIT[l:N] ;

BEST YET:- 0;
CANDIDATE:- 0;
OLD_T:= infinite; Comment infinitet stands for the largest integer

that can be represented;
while (CANDIDATE It N) do

begin

CANDIDATE:- CANDIDATE + 1;

T:- LAST[CANDIDATE] - START[CANDIDATE] + 1;

if (T ge REQUIREDLENGTH) and (T It OLD T) then

BESTYET:- CANDIDATE;

OLDT:- T;

end;

end-if;
end;

end-while;

if BESTYET = 0 then ERROR ACTION end-if;

ACTUAL:- (START[BESTYET] ,OLD T); conent the single variable ACTUAL
is represented as two integers
that are always used togetl er;

N:- N - 1;

comment close up the gap caused by removing-that element;

for I:- BESTYET step I until N do

LAST[l]:- LAST[I+IJ;

START[I] :- START[I+1];

end;
end-for;

ALLOCATZ(ACTUAL);

end;

2-30 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Family Development by Stepwise Refinement /Doc. PF.6

ADDITIONAL ASSUMPTION

The length of the requested space, REQUIREDLENGTH, is input to the
program. It must be known by BEST OF.

1. Stage 3 design decisions

a. Each item in the free-space table has the starting address

(START[item]) and the ending address (LAST[item]) of the
free space identified by the item in the arrays START and
LAST.

b. The entire free space that is selected will be allocated,
not just the part of the space that is needed.

c. The integer values of CANDIDATE and BEST YET are indices
into the table containing free space information.

d. A policy of "best fit" is used to select the smallest free
space whose length is greater than or equal to
REQUIREDLENGTH. Because the boolean variable BETTER SPACE
MIGHT EXIST is true until "all spaces considered" is false,
so that it need no longer be included as one of the loop
termination conditions. If the policy "first fit" were
used, BETTERSPACE MIGHTEXIST would become false as soon as
the first suitable space were found.

2. Design decisions not made in Stage 3

a. The order in which the entries are stored in the list.

b. The ERROR-ACTION that will be taken.

f

SOFTWARE ENGINEERING PRINCIPLES 2-31
14-25 July 1980

• .± , .. , . , .,._ f~t.
,, ': ' '

. -

F SEC. 2 / PROGRAM FAMILIES

c. Implementation of ALLOCATE.

V. Another Member of the Memory Allocator Family

A. Design decisions and assumptions

I. All the assumptions made for Stage 1.

2. There is a list of free spaces represented by two arrays. Each
can be accessed by an index into the array identifying the free
space. Each free space is represented by its starting address
(START[item) and its length (LENGTH[iteml).

3. Both free space arrays have at least N entries and all entries
bcween 1 and N represent valid free spaces. The first space
searched is identified by the first entry, and the last space
searched is identified by the Nth entry.

4. During execution of the memory allocator program, no items will
be added to or removed from the free space list by other
programs.

5. The only other program that might change the free space list is
one that adds items to the list. This program compacts two or
more contiguous free spaces into one space represented by a
single entry on the list so that the list will never -ontain two
contiguous areas.

6. Once execution of the program begins, no other execution of it
will begin until the executing program is completed.

2-32 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

7% ME

Family Development by Stepwise Refinement / Doc. PF.6

7. Before the search begins, there is no check to determine if

allocation is possible (e.g., check for empy free space list).
After the search is performed, if no suitable free space was

found, a subroutine ERRORACTION is to be called.

8. The length of the requested space, an integer called

REQUIREDLENGTH, is input to the program.

9. A policy of "best fit" is used to select the smallest free space

whose length is greater than or equal to REQUIREDLENGTH.

10. While a candidate is being considered, it is not removed from

the free space list.

11. The space that is allocated is equal in length to REQUIRED LENGTH

and is taken from the beginning of the free space selected by
the "best fit" algorithm.

12. The free space list is adjusted to reflect the allocation of the

necessary part of the selected free space.

13. A procedure named ALLOCATE is supplied with information about

the space to be allocated and gives the space to the requesting

program.

SOFTWARE ENGINEERING PRINCIPLES 2-33

14-25 July 1980

7i

SEC. 2 / PROGRAM FAMILIES

14. The variables BEST YET and CANDIDATE are integers, so that the

test for NOT ALL SPACESCONSIDERED can be an integer test on the
value of CANDIDATE.-

The value null indicates no item on the list.

B. Comparison of the two family members

1. Same assumptions and design decisions as Stage 2.

2. Differences in Stage 3 design decisions.t4

C. Alternative ways to develop the program

1. Start from scratch.

2. Start with Stage 3. Scan line by line and make required changes.

3. Go back to Stage 2. Develop new program from there.

SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980j AA

Family Development by Stepwise Refinement / Doc. PF.6

D. Abstract program for another member of the memory allocator family

begin integer BESTYET, CANDIDATE, N, T, REQUIREDLENGTH, I;
integer array LENGTH[l:N], START[I:N];

BEST YET:- 0;
CANDIDATE:- 0;
T:= infinite;

while (CANDIDATE It N) do

CANDIDATE:- CANDIDATE + 1;

if (LENGTH[CANDIDATE] ge REQUIREDLENGTR) and
- (LENGTHICANDIDATE] It T)

then
begin

BEST YET:- CANDIDATE;
T:- LENGTH[BESTYET];

end;
end-if;

end;

end-while;

if BEST YET = 0 then ERRORACTION end-if;

ACTUAL:- (START [BESTYET],REQUIREDLENGTH);

if (REQUIRED_LENGTH It T) then

START[BEST YET] := START[BEST YET] + REQUIRED LENGTH;
LENGTH[BEST_YET] : = T - REQUIREDLENGTH;

end;
else

N:-l

for I:- BESTYET step I until N do
begin

sTART[I] :- START[I+I];
LENGTH[I] :- LENGTH(I+];

end;
end-for;

end;
end-if;

ALLOCATE(ACTUAL);
end;

SOFTWARE ENGINEERING PRINCIPLES 2-35
14-25 July 1980

4--. - - _ - --- J

PF. 7 Applying the Program Family Principle

LECTURE

I. Steps of the Family Methodology

A. Identify the characteristics shared by family members

1. Example of feature conon to all: capability of users to
display a received message

2. We may need to identify a larger set of characteristics than
that required by any single member

B. Identify and encapsulate the differences among family members

1. A software structure suitable for all family members is
formulated

2. In that structure, the software is partitioned into modules that

encapsulate the various distinguisc ing characteristics

SOFTWARE ENGINEERING PRINCIPLES 2-37
14-25 July 1980

4' - -

3EC. 2 / PROGRAM FAMILIES

11. Application of the Family Methodology to Military Message Systems

A. To identify comonalities and differences among members, a model,
based on a series of nested machines, was developed to represent
each member of the family

I. Four machines

2. The data objects and operations j' each extended machine are
constructed from the data objects and operations of another
machine

2-38 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

-4.-7~~7 - ..-..-. ~

Applying the Program Family Principle / Doc. PF.7

3. Examples of each machine's data objects and operations

Machine Objects Operations

Hardware registers; load, store;

memory words move

Operating System processes; create process, destroyprocess;
segments move-segment, copy..segment

Message Core messages; create messagesetfield message,

get field message;
message files create .msgfile,addmsg..msgfile,

rmvmsg msgfile, destroy msgfile

User Coimmand Lang. messages; COMPOSE MESSAGE, DELETE MESSAGE,
PRINT MESSAGE, SEND MESSAGE;

message-files CREATE FILE SECRET,
PRINT FILE, DESTROY FILE

4. Difference between message core machine and user command
language machine

a. message core operations are typically less powerful than

user comand language statements

b. to the extent feasible, all message core data types are
specified independently of one another; i.e., an operation
on a data object of a given type affects only that object
and no others

SOTWI ENGINEERING PRINCIPLES 2-39
14-25 July 1980

______ _____ __G___I_ V..PL $ -3

SEC. 2 / PROGRAM FAMILIES

5. Examples of user command language statements and the different
data-objects each affects

a. Command: CREATE MESSAGE AUTODIN SECRET CHINA
Message System: SIGMA
Operations: Create an AUTODIN message at Secret

and insert it in a message file
named CHINA

Data Objects Affected: message, message-file

b. Command: CREATE FILE USSR CONFIDENTIAL

Message System: SIGMA
Operations: Create a message file named USSR at

Confidential and insert an entry for
it in the user's directory of
messagefiles

Data Objects Affected: message_file, messagefile directory

c. Command: PRINT SEQUENCE. S TEMPLATE. T
Message System: HERMES
Operations: Print every message in SEQUENCE.S

using the display format defined by
TEMPLATE. T

Data Types Affected: message, message_file, sequence,
template

2-40 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

. 9,

Applying the Program Family Principle /Doc. PF.7

B. Step 1: Identify the characteristics shared by family members

1. Family members differ

a. user coimand languages

- different organizational procedures

- different habits and preferences

b. physical hardware

- special requirements aboard ships

- different processing speeds and/or memory requirements

c. operating systems

- different hardware has different operating system

- same hardware supports more than one operating system

2. The significant shared characteristics of military message
systems are functional capabilities

a. create, coordinate, send, distribute, display, and delete
messages

SOIPIUARZ WGINUERING PRINCIPlIS 2-41
14-25 July 1980I

SEC. 2 / PROGRAM FAMILIES

b. create, destroy, add messages to, and delete messages from
message files

3. Shopping list of message core data types and operations

SIGMA HERMES

message X X
create message X X
delete message x x
sendmessage X X
setfield message x x
getfield message X X

message_file x x
create-messagefile K x
destroymessagefile X
addentry.messagefile X X
rmventry.messagefile x x

filter X X
create-filter x X
destroy_filter K I
modify filter x

template -_

create-template X
destroy-template -
updatetemplate x

useryprofile
create_pro file

addtermpro file

2-42 SOFTWARE ENGINKERING PRINCIPLES
14-25 July 1980

Applying the Program Family Principle / Doc. P1.7

C. Step 2: Identify and encapsulate the differences

1. Every user command language statement can be expressed as a

sequence of message core operations

2. Similaxly, every message core operation can be translated into a
sequence of operating system calls and/or machine instruction.

3. The message core insulates the operating system/hardware from
changes in the user command language

a. when the user command language changes, the sequence of
message core operations that implements each user command
language statement will require change

b. the lower level code that supports each message core
operation will not require revision

4. The message core also insulates the user command language from
changes in the operating system/hardware characteristics

a. each message core operation must be reimplemented using the
new operating system calls and/or new machine instructions

SOFTWARE ENGINEERING PRINCIPLES 2-43
14-25 July 1960

SEC. 2 / PROGRAM FAMILIES

b. the translation of each user comuand language statement into

a sequence of message core operations will remain unchanged

IT. Lessons Learned

A. We developed sets of shared features. Each family member is

associated with some subset of each set.

1. Shopping list of message core data types and operations

2. Shopping list of semantics of user command language statements:
examples

a. CREATE TEMPLATE T

b. EDIT FILTER F

c. PRINT MESSAGE id [print-template]

d. CREATE MESSAGE [type] [security-level] [message-file]
[compose-template]

B. We limited the range of family members

1. Examples

a. Number of message core machines

2-44 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Aplying the Program Family Frinciple / Doc. EP.7

b. Semantics of user command language

2. These are examples of early design decisions. In making these
decisions, we had to confirm that we didn't rule out any
features that would be needed later on.

C. We studied specific family members in detail. It is helpful if some
family members already exist, since it is easier to determine the
requirements of existing systems than systems that will be built at
some future date.

SOFTWARE ENGINEERING PRINCIPLES 2-45

14-25 July 1980

MENV

PF. 8 Design Decisions in HAS Requirements

EXERCISE

Name:

In the HAS requirements summary (HAS.l), many decisions are already made
that implicitly rule out family members that might be useful later. Because
these are early decisions, they are likely to permeate the design and be very
difficult to change later.

For example, the Navy may eventually require large, moored, repairable
buoys to collect weather data in key locations. If HAS software designers
consider the decisions "dIrifting buoy" and "disposable" absolutely fixed, the
software may be designed so that it is not reusable in the new buoys, even
though the functions are similar.

Study HAS.1, looking for four or fire software-related design decisions
that have already been made. List each decision, along with several
reasonable, but rejected, alternatives. Indicate the alternative that was
cl osen for HAS. You may want to format your answers as multiple choice
questions, as shown in the example below.

EXAMPLE

I. The HAS software transmits the following inrormation: (the alternative
chosen in HAS.1 is marked with "**".-

a. No information,

b. A summary at fixed intervals,
c. A summary when requested,
d. A small set of predefined reports on request,

** e. A summary at fixed intervals and a small set of predefined reports on
request,

f. Answers to specific queries.

SOFTWARE ENGINEERING PRINCIPLES 2-47
14-25 July 1980

PF.9 Design Decisions in HAS Requirements

EXERCISE SOLUTION

Listed below are some of the software-related design decisions implicit in

HAS.l, along with some reasonable alternatives.

I. The software will operate rn the following hardware:

a. BEEN computer

b. NOVA computer
c. a microprocessor

d. PDP-11 computei
e. any of the above

NOTE: Choice of computer can profoundly affect software construction; for
example, consider availability of support software.

2. The software designer should assume the sensor quality will be:

** a. poor, because HAS will use the cheapest sensors available
b. variable, depending on accuracy required at a particular location
c. consistently good

NOTE: Assumptions about sensor quality affect decisions about frequency

of reasonableness checks and the complexity of filtering algorithms.

3. The data retained in the system will be:

a. none -- no data retained
b. most recent data only

** c. most recent data with a limited history
d. extensive history data

4. The various deployed buoys may or may not be connected as follows:

a. master/slave mode where several buoys in predefined area collect
data but only one transmits

** b. no connection
c. scphisticated network with cooperation and comparison

I PAGE BLAMNKOT F1jkZD

SOFTWARE ENGINEERING PRINCIPLES 2-49
14-25 July 1980

aA
7___________

SEC. 2 /PROGRAM FAMILIESI

5. The communications system will consist of:

a. wires with low data rate
b. transmitter only, for regular broadcasts
c. transmitter and receiver, for operating in broadcast burst mode

on request
*d. transmitter and receiver, for broadcasting regularly and

responding to requests
e. multiple transmitters for broadcasting reports simultaneously on

different channels

6. Geographic location will be determined:

a. never -- geographic location information will not be available
b. by initialization on deployment -- for moored buoys

*c. by Omega fix
d. by NAVSAT fix

7. The message format is:

*a. RAINFOILM
b. determined by the HAS system designer
c. flexible -- must change to meet varying user requirements

2-50 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

a-

*

1 -- S

A

9

4

ar

4 h
r

UE. 1 Desired Responses to Undesired Events

LECTURE

I. Introduction

A. All previous discussions focus on specification of desired behavior

B. Experience tells us that we will not get all we desire all of the
time

C. Behavior on the occurrences of undesired events (UEs) should not be
decided implicitly during the implementation -- explici~t decisions
are needed

SOFTWARE ENGINEERING PRINCIPLES 3-1
14-25 July 1980

;EC. 3 / UNDESIRED EVENTS

111. The Exigrence of Alternatives When Something Goes Wrong

A. Example: A garbled address in found on an input tape

1. Alternatives

a.Skip it

b. Print it with known errors -- no change

c.Piti iheroeu at isn

c. Print it with erroneous parts missing b

e. Print it with e-rroneous parts marked

3-2 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Desired Responses to Undesired Events IDoc. UE-l

f. Use minimal correction methods to correct errors

g. Search for closest address in files

2. For each alternative, there is an appropriate situation

3. In practiLe, decision not made in specifications -- although it
is visible behavior

B. Example: A memory bank in a multi-programming system fails -- no
data lost -- insufficient memory available

1. Alternatives

a. Kill the job(s) that were currently using that memory bank
allowing the others to continue normally

SOFTWARE ENGINEERING PRINCIPLES 3-3
14-25 July 1980

':EC. 3 / UNDESIRED EVENTS

b. Use s-vapping to allow all of the jobs to continue sore slowly

c. Pick the newest (most recently started) job and kill it,
continuing with this procedure until those remaining
function normally

2. All alternatives technically feasible if expected and planned for

3. Should and can be part of system specifications

C. Example: Message system operator types date of 1780 on message

1. Alternatives

a. 3ystem rejects the message becauie year is "out of range"

3-4 SOFTWACE zGINURING PRINCIPLES
14-25 July 1980

Desired Responses to Undesired Events / Doc. UE.1

b. System fileq the message as the most recent me~sage in its

logs

c. System queries the operator, accepts message if he insists

r,

d. System files the message as the oldest message in its logs

2. All easi!y achieved technically

3. All useful in some situations

III. The Existence of Alternatives When Designing the System

A. What, me worry?

SOFTWARE ENGINEERINr PRINCIPLES 3-5

14-25 July 1980

4 *-------- ___________________________________I

SEC. 3 / UNDESIRED EVENTS

B. Maintain redundant information necessary to discover inconsistencies

C. Maintain redundant information needed to recompute state

D. Maintain information necessary to restore state "immediately"

1. Spend the time in recovery actions if something occurs

IV. Factors in the Tradeoff

A. Cost of preparation for recovery whether or not an error occurs

B. Cost of no recovery and no recognition if an error occurs

3-6 SOFTWAIE ENGINERING PRINCIPLES
14-25 July 1980

Desired Responses to Undesired Events /Doc. UE.1

C. Cost of recognition but no recovery if an error occurs

D. Cost of actual recovery in the event of an UE (Undesired Events)

E. Frequency of UEs must be a deciding factor

V. Incidents vs. Crashes

A. Concept from air and ground traffic control

B. Incident: something abnormal, undesired, against the rules

1. Recovery without significant- long range cost

SOFTWARE ENGINEERING PRINCIPLES 3-7

14-25 July 1980

.__ _ .7 ...

SEC. 3 / UNDESIRED ZVENTS

C. Crash: abnormal, undesired, forbidden -- results in significant
costs

D. Traffic example

E. Computer system examples

1. Incident: most recent version of file lost; reconstructed from
old copy and change list

2. Crash: file completely lost or real-time information too late

3. What is "successful" UE handling?

3-8 SOFTWAMH SWIMRING PRINCIPLES

14-25 July 1960

I

Desired Responses to Undesired Events /Doc. UE.l

VI. Generalization to Degrees of UEs

A. Need for generalization -- the existence of intermediate
possibilities, incidents with higher costs, crashes of little

significance

B. The designer and implementor heed guidance as to "preferred" outcome

in the event of an incompletely correctable TJE

C. There il no obvious ordering -- no single cost factor

D. The degrees must define a relation "Iess desirable than"

VII. Classes of UEs -- Guide to Error Anticipation

A. Resource failure

1. With informntion loss us. without information loss

SOFTWARE ENGINEERING PRINCIPLES 3-9
14-25 July 1980

SEC. 3 /UNDESIRED EVENTS

2. Temporary vs. long term

B. Incorrect input data

1. Detectable by examining input only

2. Detectable by comparison with internal data

3. Detected externally (after input)

4. Reported to user by means of incorrert output

3-10 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 19S0

Desired Responses to Undesired Events /Doc. UE.

A
1 C. Incorrect internal data

1. Detected by internal inconsistency

2. Detected by comparison with input data

3. Reported to system in terms of incorrect output data

4. Uncertain data (e.g., after reporting of hardware parity error)

VIII. Strategies (Conclusions)

A. Above list provides an approach to listing of classes of UEs,

appropriate responses should become part of specification

SOFTWARE ENGINEERING PRINCIPLES 3-11

14-25 July 19b0

-- _ _--__ _..... ..__ _ _ _iiml

Desired Responses to Undesired Events / Doc. UE.1

B. External interfaces suggested by above list must be present

C. Tests on internal and external data, as well as resources, that are

to be performed by the software must be specified. Both exits must

be shown

IX. References

Endres, A. 1975. "An Analysis of Errors and Their Causes in Systems

Programs." Proceed. of the 1975 International Conf. on Reliable
Software, pp. 327-336.

Parnas, D. L. 1975. "The Influence of Software Structure on

Reliability." Proceed. of the 1975 International Conf. on Reliable

Software, pp. 358-362.

Pa nas, D. L.; and Wurges, H. 1976. "Response to Undesired Events in

Software Systems." Proceed. of Second International Conf. on

Software Engineering, pp. 437-446.

Kaiser, C.; and Krakowiak, S. 1974. "An Analysis of Some Run-Time Errors

in an Operating System." IRIA Rapport de Recherche, no. 49.

Heninger, K. L.; Kallander, J.; Parnas, D. L.; and Shore, J. E. 1978.

Software Requirements for the A-7E Aircraft. Naval Research

Laboratory Memorandum Report no. 3876.

SOFTWARE ENGINEERING PRINCIPLES 3-12

14-25 July 1980 j~I'
=i "i 1 -.. .. -...-"I-I_.... _ .. /_lll li li li__ll

UE.2 MP and UEs

EXERCISE

Name:

Introduction

With one major exception, the descriptions of the MP system all fail

to mention the behavior desired of the system in the event that something

goes wrong. The exception is the frequently occurring undesired event --

noisy message data. There are, however, many other UEs that should be

mentioned in a system specification.

Examples:

I. What services should be provided if the disk fails? Full service is

obviously impossible, but partial service can be expected. What services have

priority?

2. What services should be provided to assist in the event that messages

that were thought to have been transmitted were not transmitted because of a

failure beyond the scope of MP. MP's data structures now contain incorrect
data.

3. How should the system react if an obviously incorrect date is inserted

in a message being composed (e.g., 1780)?

Assignment

Think about the functions provided by MP and try to supplement the above

list. The UE classification scheme in the lecture outline may provide some

help in organizing your efforts.

SOFTWARE ENGINEERING PFINCIPLES 3-13

14-25 July 1980

=k . _ .4

UE.3 MP and UEs

EXERCISE SOLUTION

The following list of possible UEs is in no way complete. It merely
illustrates the types of things th.t must be considered when defining the
desired behavior of a system.

1. Resource failures

a. What services can be provided if the operator's console fails?

L. What should the system do if the UGHTRANS equipment fails to respond?
Should ,he system detect this or wait for external notification?

c. What services should be provided if a bank of memory goes down?

2. Inc '-ect input data

a. What should the system do if the operator reports an incorrect
destination during the time that the message is being transmitted?

b. -7iat should the system do if it does not receive a response within the

r-,iired resonse time, for a message that requires a response (e.g.,
an emergency command precedence message)?

c. Whet should the system do if the operator tells it that the date on
ali of the last 20 messages (Feb. 30) is incorrect?

3. incorrect internal data.

a. What should the system do if it discovers that there are parity errors

in the Watch List?

b. What shou'd the system do if it discovers that its internal directory
used to find log data contains an impossible disk address?

c. What sho:Id the system do if two messages being composed have grown so

large that deadlock prevents either from being finished before the
other finishes?

SOFTWARE ENC:NEERING PRINCIPLES 3-15
14-25 July 1980

UE.4 Intermodule Interfaces and UEs

LECTURE

I. Introduction

A. UE handling can result in an order of magnitude decrease in the

frequency of crashes

B. UE handling tends to introduce interprogram dependence

C. Preparation for UEs can avoid this

11. Probability Considerations and UE Handling

A. Need for redundant information -- information that would not be

needed if no UE occurs

B. Detection vs. correction

fPAG BLANK-Mr 1jzo

SOFTWARE ENGINEERING PRINCIPLES 3-17

14-25 July 1980

SEC. 3 / UNDESIRED EVENTS

C. Number of simultaneous errors

1. Example: Warning lights in automobiles

2. Example: Archive files on different devices

D. No error-free system -- probability of error can be arbitrarily

reduced

E. Extra complication -- situations in which multiple errors are highly
probable

III. The Effect of Structure on UE Handling

A. Proper response to an error requires efforts from various modules

1. Example: Unreadable block on a tape file.

Detected by tape handler.
Attempt to correct by rape handlet.
File system knrwv wihich file, location of other data.
Data system knows how to reconstruct data.

3-18 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

. ___ __ _ __ __ __ _ __ __ ____ _ + V

Intermodule Interfaces and UEs / Doc. UE.4

2. Example: Part of memory becomes error prone (no parity).
User program detects inconsistent data.
Memory allocator must not assign this area.
Deadlock prevention must know of reduced resources.
Background memory system must attempt to restore data.

B. Conventional response

1. Write a program that uses all relevant tables for common cases
Introduce "connections between modules."

C. Conclusion -- interface must include UE communication possibilities

Examples;

1. Tape handler reports nature of error to file system in terms of
block number and tape -- not: file system reads bits

2. File system reports to data system in terms of file/line

3. Data system knows file/line -- storage of redundant data

4. Memory user has "complaint box"

5. Banker can be informed of catastrophe, bad loans

6. Banker needs interface to "job killers" 9

7. Bentker needs alternate entry to recompute deadlock danger

SOFTWARE ENGINEERING PRINCIPLES 3-19
14-25 July 1980

.-

SEC. 3 /UNDESIRED EVENTS

IV. Abstractions that Interface with Error Recovery

A. Useful information can be presented abstractly -- not likely to
change

B.' Hiding too much can prevent recovery

1. Example: "parallel changes" to a file

2. Example: indistinguishable error classes in hardware

V. Software Traps as an Error Reporting Mechanism

A. Reduce code complexity by separating normal behavior, detection, and
response

B. Decrease likelihood of undetected errors

C. Ease the removal of detection code when not needed

3-20 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

I
Intermodule Interfaces and UEs /Doc. UE.4

D. Four possibilities for actions after UE detection

1. continue
2. retry

3. clean up
4. give up -- only if no higher level remains

VI. Classes of UEs to Report

1) Incorrect call
2) Incorrect results
3) Report earlier incorrect call
4) Resource failure
5) Unlikely actions

VII. "Impossible" vs. Possible States After a UE

VIII. Example of Abstract Reporting of Defects -- Tree Specification

IX. Summary -- To Make the Modular Concept Work, All Communication Must be
Over the Predefined Interface -- UEs Included

SOPWARE ENGINEERING PRINCIPLES 3-21
14-25 July 1980

-_£_______

UE. 5 MP Intermodule Interfaces and UEs

EXERCISE

Name:

In the improved MP system (document MP.4), recovery from mishaps will

often require the cooperation of several modules. One module may discover and
handle the problem initially, but other modules must be informed to take

appropriate action. Example: If a message is so badly garbled that the
external interface module (E) assigns a very low probability of its being

correct, this should be noted in the logs by IR/LOG. The interface between
the modules must provide for communication that will allow this. Examine the

description of the improved MP. For each UE listed below, explain which
modules are affected and describe the information that must be communicated
between them.

1. Parity errors in output buffer.

2. High rate of errors in part of memory.

jiWamIlo PAGg BIAIt-NOT 11 LD

SOFTWARE ENGINEERING PRINCIPLES 3-23

14-25 July 1980

S.? - -

7m

SEC. 3 / UNDESIRED EVENTS

3. Operator's console is no longer functioning.

4. An operator tries to use an UGHTRANS channel that does not exist.

5. All available disk space is allocated.

3-24 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

UE. 6 MP Intermodule Interfaces and UEs

EXERCISE SOLUTION

1. Parity errors in output buffer.

The CM module requests the EI to rewrite the same information into other
core locations.

2. High rate of errors in a part of memory.

The MH module requests the AL not to allocate the error-ridden area unless
no alternative exists. It requests DS to report the problem to the operator.

3. operator's console is no longer functioning.

TC detects that an operator's console is no longer functioning. The
assignments for that console must be reassigned. (Resources allocated by AL
to users of that console can be temporarily reassigned.) Partially processed

messages must be either finished or removed from the system.

4. An operator tries to use an UGHTRANS channel that does not exist.

EC must inform MH to correct messages containing that channel number. EI
informs the operator who has been using that channel.

5. All available disk storage space is allocated.

PS must inform the AL and the operator. Space must be freed by putting
old logs or messages in archival storage off-line. Message archiving must be
done by use of MH and log archiving by IR.

SOFTWARE ENGINEERING PRINCIPLES 3-25
14-25 July 1980

II

UE. 7 The Uses Hierarchy and UEs

LECTURE

I. Introduction

A. UEs correspond to the violation of a specification

B. Uses hierarchy as the key to understanding UEs

II. The Problem of tesigaing for UEs

A. Characteristics of UEs

1. relatively infrequent

2. often caused by higher levels in uses hierarchy, detected by

lower levels

3. recovery best performed at the higher levels

ppjw=1ND p3aLAm=n-ik F-

SOFTWARE ENGINEERING PRINCIPLES 3-27
14-25 July 1980

SEC. 3 / UNDESIRED EVENTS

B. UZ detection and handling should not be afterthoughts in the design

C. How can we incorporate UE comunication in such a way that

appropriate (application dependent) recovery techniques can be added?

D. Problem -- UE handling requires efforts of several modules and levels

9. Result -- potential program interdependence that violates design
principles

III. Criteria of Successful Design for UE's

A. UE communication doesn't violate information hiding

B. UE handling doesn't interfere with subsetability

3-28 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 190

_ + __ _ _ - - ~ - - -V

The Uses Hierarchy and UEs / Doc. UE.7

C. Design permits change in UE handling without change in system

structure

D. New levels in the uses hierarchy can be added (with UE handling)

without changing the lower levels

TV. Review of the Uses Hierarchy

A. Given progrdm A with specification Sa and program B, we say that A

uses B if A cannot satisfy Sa unless B is present and satisfies
some non-trivial specification Sb . The assumed specification Sb

may differ for different users of B.

B. If A doesn't care about any Sb, a call on B is not a use of B

V. The Problem of UE Communications in a Uses Hierarchy

A. "Uses" provides a means for communicating downwards in the hierarchy

SOFTWARE ENGINEERING PRINCIPLES 3-29

14-25 July 1980

______ _____ ___ '

SEC. 3 / UNDESIRED EVENTS

B. Since recovery possibilities are usually at higher levels, lower
levels need to coimmunicate UE detection upwards

C. Lower levels can make no assumptions about upper levels (i.e., they
can call programs at higher levels, but they can't use programs- at

highe rlevels)

L. Using "Traps" to Communicate Upwards in the Uses Hierarchy

A. The analogy with hardware

B. Consider each uses hierarchy level as a virtual machine with traps

for the UEs detectable by the virtual machine

C. Hardware trap = branch to fixed trap location;
virtual machine trap = call (not use) of routine with reserved name

3-30 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

II

The Uses Hierarchy and UEs / Doc. UE.7

D. Actual trap ioutines (UE handlers) provided by users of virt-ial

machine; can change dynamically

E. Virtual machine traps provide upwards Up conmunications without
violating uses hierarchy, make no assumptions about who will receive
information and what will be done with it

VII. Problems in Designing the Virtual Machine Traps

A. Can be advantageous to report 3n a. class of UiEs with a single trap

B. Further information about the UE can be passed by parameters

Ir. Information reported upwards must be in terms of appropriate

abstraction -- must respect information hiding

I. No references to internal data structures or programs

SOFTWARE ENGINEERING PRINCIPLES 3-31
14-25 July 1980

SEC. 3 /UNDESIRED EVENTS _____________________

2. No references to partially computed results

3. Information only in terms of specification of the virtual machine

4. Different versions of the same module must provide same UE
reports

D. Trade-offs

1. Amount of information in UE handler name and parameters vs. ease
of analysis at user level

2. Number and detail of virtual machine traps vs. diagnostic
programs at the user level

E. TiE information may also be reported "sideways" -- reports to the
prograimmer

3-32 SOFTWARE ENGINEERING PRINCIPLES
A4-25 July 1980

AA6

It The Uses Hierarchi and UEs / Doc. UE.7

VIII. Classes of UEs to Consider

A. Parameter values

B. Capacity limits

C. Undefined information requests

D. Operations in certain order (e.g., open before read)

E. Detecting actions likely to be unintentional

IX. Sufficiency

SOFTWARE ENGINEERING PRINCIPLES 3-33i 14-25 July 1980

REC. 3 / UNDESIRED EVENTS

X. Trap Priority -- Call Only One at a Time

XI. Detecting Errors -- Redundancy vs. Efficiency -- Early Development

XII. Summary in Terms of Criteria for Success (see outline item II)

A. Respect information hiding by communicating UEs in terms of suitable
abstractions

B. Maintain Subsetability by using traps that don't violate uses
hierarchy

C. Software traps allow changes in UE handling without changes in system
structure

D. UE detection based on specifications permits addition of higher
levels without change

3-34 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

"__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

a a

CI

MOD. 1 Decomposition into Modules

LECTURE

I. Limitations of Stepwise Refinement

A. Level of detail (assumptions must be stated)

1. Intuitive understanding assumed

B. Sequencing decisions are implied

C. Postponement principle: postponement of sequencing decisions

D. Size of programs expands -- more people, work involved

I. What Else Can We Decide Besides the Order of Events?

A. The design of data structures

SOTTWARE ENqGINEERING PRINCIPLES 4-1

14-25 July 1980

4 SEC. 4 /INFORMATION-HIDING MODULES

B. Interfaces,

C. Work assignments -modules

D. Parameters that characterize the program family

111. History of Modular Decomposition

A. Unit of measure -3.27 square meters

B. Parts to be put together

IV. Modules of Hardware

A. How you put them together is obvious; there are well-known physical
constraints. Hardware is a physical object

4-2 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Decomposition into Modules D oc. MOD.1

V. Modules of Software -- When Are Parts Put Together?

A. Write time

B. Assembly time

C. Memory load time

V1. The Three (or More) Meanings Must Not Be Confused

A. Constraints different

1. Write time -- intellectual coherence for programmer

2. Assembly time -- name conflicts

3. Memory load time -- fitting into core things needed at same time

SOFTWARE ENGINEERING PRINCIPLES 4-3
14-25 July 1980

____ 4

SEC. 4 / INFORMATION-HIDING MODULES

B. Myth of overmodularization

I. Modules should be as small as possible

C. Inefficiency results from forcing coincidence

VII. In This Course, Modules Are Always Design-Time or Change-Time Entities

A. Units of change

B. Redesign - throw away

C. So small that changing does not help

4-4 SOFTWARE ENGINEERING PRINCIPLES

14-25 July 1980

0 M 02696-

Decomposition into Modules /Doc. MOD.l

VIII. The KWIC INDEX Example

A. Conventional structure

1. Input Module

2. Circular Shift Module

3. Alphabetizing Module

4. Output Module

5. Master Control Module

B. Decisions likely to change

I. Input format

2. How stored in memory

3. Output table sorted completely before output

SOFTWARE ENGINEERING PRINCIPLES 4-5
14-25 July 1980

SEC. 4 / INFORMATION-HIDING MODULES

C. Alternative structure

1. Line Holder Module -- special purpose memory to hold lines of
KWIC index

GETCHAR(lineno, wordno, charno)
SETCHAR(lineno, wordno, charno, char)
CHARS(lineno, wordno)
LINES
WORDS(lineno)
DELETELINF(lineno)
DELETEWORD(lineno, wordno)

2. Input Module -- reads from cards; calls line holder programs to
store in memory

INPUT

3. Circular Shift Module -- uses line holder programs to get data
from memory; may make table, may not

CSSETUP
CSCHAR(lineno, wordno, charno)

4. Alphabetizer Module

ALPH
ITH(lineno)

4-6 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

________I

Decomposition into Modules / Doc. MOD.1

5. Output Module -- calls ITH and line holder programs

OUTPUT

6. Master Control Module -- calls INPUT, CSSETUP, ALPH, and OUTPUT

D. Claim

1. Not getting any really different program

2. Different way of cutting up -- so that change is confined in one
person's work (recall module definition)

3. System organized into set of. modules so that it is clearly seen
what needs to be changed

4. Not necessarily better algorithms or data structures

SOFTWARE ENGINEERING PRINCIPLES 4-7
14-25 July 1980

SEC. 4 / INFORMATION-HIDING MOLJLES

5. Simplifies interfaces

IX. Terminology

A. Information-hiding modules

- identify the design decisions that are likely to change

-- have a module for each changeable design decision

-- each changeable decision is a "secret" of a module

B. The secret of a module

Exactly the one design decision that might change -- only the

implementor knows

1. Line holder -- how lines are represented in memory

2. Input -- input format

3. Circular shift -- how circular shifts are represented

4-8 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Decomposition into Modules / Doc. MOD.l

4. Alphabetizer -- time in which alphabetization is done and

sorting method used

5. Output -- output format

C. Structure redefined -- terms of modular structure

1. Connections between modules are assumptions that they make about

each other (Interface)

2. Mistake -- flowchart boxes become modules

D. Frequency of switching from module to-module

1. Steps-in-processing approach -- low frequency, of switching

2. Information-hiding -- has many separate, callable routines

SOFTWARE ENGINEERING PRINCIPLES 4-9
14-25 July 1980

SEC. 4 / INFORMATION-HIDING MODULES

3. Macros -- after expanded may be same mess but to change the
software, one looks at the information-hiding representation

X. Hiding information about the design at write-time and not information at

run-time -- reduce the connectivity between the modules at write-time

anu not at run-time

A. Run-timc. information versus design-time information

XI. References

Parnas, D. L. 1971. "Information Distribution Aspects of Design

Methodology." Proceed. of IFIP Congress 71.

Parnas, D. L. 1972. "A Technique for Software Module Specification with
Examples." Comm. ACM, vol. 15, no. 5, pp. 330-336. /

/

Parnas, D. L. 1972. "On the Criteria Used in Decomposing a System into

Modules." Comm. ACM, vol. 15, no. 12, pp. 1053-1058. /

Linden, T. A. 1976. "The Use of Abstract Data Types to Simplify'Program

Modifications." Proceed. of Conf. on Data: Abstraction, Definition

and Structure, SIGPLAN Notices, Special Issue, vol. 11, pp. 12-23.

Parnas, D. L.; Shore, J. E.; and Weiss, D. M. 1976. "Abstract Data Types

Defined as Classes of Variablis." SIGPLAN Notices, Special Issue,

vol. it, pp. 149-154. Also Naval Research Laboratory Report no. 1998

Parnas, D. L. 1977. "The Use of Prc ise Specifications in the

Development of Software." Proceed. of the IFIP 1977, pp. 86.-867.

4-10 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

LI

MOD.2 Change and the Original MP Modular Structure

EXERCISE

Name:

1. (Hardware change) Suppose that a bulk core device were added to the
optional hardware in tbe UGH 2PIE system. The device has roughly the capacity
of the small disk used (but not that of the extended mass storage or large
disk option); it is very fast (about 1/5 the speed of the primary memory,
where the disk was 1/10000 for access); and code may be executed from bulk
core. If MP is to make the best use of such a device, what modules must be
changed? Explain why the change is not confined to one or two modules.

2. (Message format change) Suppose that a message format change is announced
in which Format Line 5 may be entirely omitted from a message of the lowest
security class. What modules will be affected by this change? Explain why
the change is not limited to one or two modules.

SOFTWARE ENGINEERING PRINCIPLES 4-11
14-25 July 1980

MOD. 3 Change and the Original MP Modular Structure

EXERCISE SOLUTION

1. The bulk core can replace small disks, but it cannot replace large disks.
This means that logs, if kept, will still be on disk, but that all other data
can now be in the bulk core. Unfortunately, this could change every module in
the system, some substantially, others only slightly (but the slight changes
might still be hard to make).

In practice, DK would probably be left in place, modified to use the
core. This shouldn't really be considered a triumph for modularization,
because it will multiply the overhead by perhaps a factor of ten. Any module
that uses DK will now sacrifice a lot of the hardware performance available by
not directly using the bulk core.

Changes to EX and DC and DK cannot be avoided, and they are substantial.
EX and DC must now choose whether to use main memory or leave the data in bulk
core, and they have no algorithms to do anything like this. The complex inter-
action between DK and EX is no longer required (indeed, since most executions
might be done in bulk core, only the scheduling and interrupt service of EX
will be required). DC now has little reason to allocate main memory at all
and thus may acquire a third class of "disk" allocation for which it is
unprepared.

Of course, if IR and LM are included ini the system with bulk core, they
will profit greatly by using it, and will r-quire large changes to do so. The
changed modules will be inappropriate to use on a system with only disk (the
UGH-VAN and UGH-20 do not have the bulk core possibility).

Two mistakes in MP are shown here. The first is that disk addresses are
used throughout the system, on the assumption that DK would always be present
to handle reads/writes. The other was that the core/disk distinction was an
early one, which was reflected in the module structure and hence hard to
reverse.

2. Certainly CO, SC, and MA will be affected by this change. (SC, even
though it doesn't use FL5, because it must skip over it to find the addressee
list.) But there will be smaller changes in OP, IR, LM, and even DC and
perhaps TO to deal with the changed messages.

The mistake is an obvious one: too many modules duplicate the process of
pulling a message apart, using slightly different algorithms, but making a
common set of assumptions about message format. Finding all the places where
these assumptions enter into code is liable to be very difficult in the
completed system.

EBE~lioPAG~E B K41.,OT fljU,,LD

SOFTWARE ENGINEERING PRINCIPLES 4-13
14-25 July 1980

MOD. 4 Modular Structure of Complex Systems

LECTURE

I. Review: Information Hiding as a Criteria

A. What is a secret?

B. What are some typical secrets?

(See Figures 1 and 2)

II. What is Different About Large Complex Systems?

A. How do we deal with unstructured lists of modules?

B. How can we tell when we have them all?

MWMNIGI PA BLANK-No0T Fnlk&D

SOFTWARE ENGINEERIN(, PRINCIPLES 4-15
14-25 July 1980

SEC. 4 / INFORMATION-HIDING MODULES

C. How does everyone remember the names?

D. How do we avoid duplications?

III. Why Should We Group Modules Into Classes?

A. Put some structure in the list

B. Help to check for completeness

C. Leads to more helpful naming conventions

4-16 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

___ ___ __ V d

Modular Structure of Complex Systems IDoc. MOD.4

D. Makes duplications less likely

IV. What are Some Possible Classification Criteria for Modules?

A. By level in a hierarchy

B. By similarity of interface

C. By type of function served or service provided

D. By nature of the secret

E. Similar programming problems

SOFTWARE ENGINEERING PRINCIPLES 4-17
14-25 July 1980

SEC. 4 / INFORMATION-HIDING MODULES

(V. What are the Classes of Modules in the A-7?

A. The Extended Computer Class of Modules

Secrets: Implementation of common data types, I/O, etc.

Characteristics of TC-2 computer such as registers, memory
structure, etc.

B. The Device Interface Modules

Secrets: Device Characteristics

C. The Physical Model Modules

Secrets: Models of physical phenomena

D. The Data Banker Modules

Secrets: Source and updating policies for common data

4-18 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

______________ ____Modular Structure of Complex Systems /Doc. !40D.4

E. The System Status Modules

Secrets: How the program keeps track of the status of the system
and detects state changes of interest to the system.

F. The Function Driver Modules

Secrets: Algorithms for performing requirements functions

G. The System Generation Modules

Secrets: Implementation of the tools used to assemble the system
from the library of components

VI. Concluding Dilemma:

How do you deal with the fact that large systems divided into
modules that are small enough to be understood have confusingly many
modules?

SOFTWARE ENGINEERING PRINCIPLES 4-19j lb-25 July 1980

SEC. 4 / INFORMATION-HIDING MODULES

figure 1*: Comon Secrets in Data Processing Systems

Secret Typical Reasons for Changes

Data base structure (logical) - New fields needed in records

- Field sizes changed

- More records required

- Faster access required for particular
fields

Algorithms - DifferenL time-space tradeoffs required

- More accurate or efficient algorithms
invented

Data storage (physical) - Size of available storage changed

- Type of available storage changed (e.g.,
from one tape drive model to another, or
from tape to disk)

- Faster access required

Input - Input medium changed (e.g., from cards to
OCR)

- Fields rearrange! within records

- More extensive error-checking required

- Input sequence changed (e.g., from
unsorted to sorted)

Output - Change in output device (e.g., from

printer to computer-output microform)

Operating system interface - Manufacturer issues new release
(e.g., JCL)

Software functions - New types of reports required
as seen by user -Cin- Client requires changes in report formats

* From Kathryn Heninger and John Shore, "Designing Modular Programs --

Methodology," Auerbach Portfolio i4-01-11, to be published.

4-20 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Modular Structure of Complex systems /Doc. MOD.4

Figure 2*: Common Secrets in Real-Time Systems

Secret. Typical Change

Computer characteristics - Computer replaced by faster, larger, or
cheaper model

- Computer replaced by standard model (e.g.,
military standard)

Peripheral devices - Sensors replaced by more accurate, more
reliable, or faster models

- Displays replaced by more flexible or more
reliable models

Resource allocation - Relative priorities of activities changed
(e.g., scheduling) - Single computer replaced by set of micros

- Capacity of resources changed, e.g.,
additional memory added

Algorithms - More accurate or faster algorithms invented

- More general algorithm invented that can
replace several more specialized algorithms

Software functions - User preferences changed, including
New modes needed
Transition between modes changed
New responses required to user inputs
New displays needed

- Computer-driven devices used for different
purpose s

*From Kathryn Heninger and John Shore, "Designing Modular Programs -

Methodology," Auerbach Portfolio 14-01-Il to be published

SOFTWARE ENGINEERING PRINCIPLES 4-21
14-25 July 1980

MOD.5 MP Secrets

EXERCISE

Name:

The modular structure of a system should be based on the aspects of the

system that are likely to change. Each changeable aspect should become the

secret of a module. Thus it is important during requirements definition and

during design to list the changeable aspects of a system. Referring to the MP

documents MP.1, MP.2, and MP.3, make a list of the changeable aspects of the

MP system. Hint: Some areas of possible change are algorithms, data

structures, formats, strategies, and hardware characteristics.

Example:

1. The internal representation of a message.

I

SOFTWARE ENGINEERING PRINCIPLES
4-23

14-25 July 1980

MOD. 6 MP Secrets

EXERCISE SOLUTION

Listed below are some aspects of the MP system that are likely to change,

and, therefore, are secrets to be hidden in modules.

1. The internal representation of messages.

2. The external message format(s).

3. The protocol(s) of the communication device(s).

4. The WATCH LIST of messages of interest.

5. The method of controlling UGHTRANS devices.

6. The format of terminal commands and displays.

7. The terminal characteristics.

8. The commands needed to compose and edit a message.

9. The organization of log data.

10. The paging and backup-store system.

11. The resource allocation strategy.

12. The interrupt handler.

13. The organization of WCB queues.

14. The format of the WCBs.

15. The search algorithm for the WATCH LIST.

16. The configuration of the system.

17. Message analysis.

ffiCg~oPAG. BiAWz40 FLU,1

SOFTWARE ENGINEERING PRINCIPLES 4-25
14-25 July 1980

- -~----------------- -

MOD. 7 Change and the Improved MP Modular Structure

EXERCISE

Name :

1. (Hardware change) Suppose that a bulk core device were added to the
optional hardware in the UGH 2PIE system. The device has roughly the capacity
of the small disk used (but not that of the extended mass storage or large
disk option); it is very fast (about 1/5 the speed of the primary memory,
where the disk was 1/10000 for access); and code may be executed from bulk
core. If MP is to make the best use of such a device, what modules must be
changed? Explain why the change is not confined to one or two modules.

2. (Message format change) Suppose that a message format change is announced
in which Format Line 5 may be entirely omitted from a message of the lowest

security class. What modules will be affected by this change? Explain why

the change is not limited to one or two modules.

SOFTWARE ENGINEERING PRINCIPLES 4-27
14-25 July 1980

SEC. 4 / INFORMATION-HIDING MODULES

3. (Message format change) As a result of the Freedom of Information Act,
A every message must include a declassification date in both FL4 and FLl2.

Which modules will require a change?

4. (Hardware change) A microfilm printer has been added to produce hard
copy. This device contains two rolls of film, one for unclassified messages,
the other for classified. Which modules will require a change?

4-28 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

MOD. 8 Change and the Improved MP Modular Structure

EXERCISE SOLUTION

I. This change can be confined to the paging module (PS) because it is the
only one that "knows" the nature of the storage devices. Some performance
Improvement might be obtained by examining Dther parts of the system, which
make a choice -bout when they request pages be removed or brought in. The
optimum choice is a function of the speed of access. Nevertheless, it is
possible to use the system initially without such improvements.

2. Only El module is affected by this change.

3. This change requires a change in the information supplied by the MH
module. The new format violates the assumptions that went into the design of
the module (namely, that no such information was present or relevant). The
danger exists that every function that uses the functions in MH may have to be
changed. For example, the programs that display messages to the operator must
be altered to include the new information in the display. Similarly, such
information must be included in logs, so that the programs that store messages
in logs may also be subject to change. The El module will also have to change
to accommodate the new format.

4. None of the modules requires a change. The control of the new device is
done by a new program that can get all of the information that it needs from
MH. If these microfilm files are considered "logs," the program can b.-
considered part of the log module. The system must consider this new storage
as "write only" memory.

SOFTWARE ENGINEERING PRINCIPLES 4-29
14-25 July 1980

MOD.9 Identifying HAS Modules

EXERCISE

Name:

The HAS modular structure given in HAS.2 is sensitive to specification

changes such as adding a CPU and second transmitter, changing the time interval
between sensor readings, or eliminating history report transmissions by

storing them internally on a floppy disk (to be picked up by passing ships or

by trained dolphins). Propose an improved modular structure for HAS based on

the system description given in HAS.1. Use the information-hiding principle

to organize the system into modules. Guide your design by using the table

below, first filling in the secrets column, and then the module that hides

each secret. Derive the secrets from consideration of possible changes

described or implied in HAS.I. Give a short description of each module,

including its functional capabilities. Recall that secrets include items such

as algorithms, data structures, formats, and hardware characteristics. An

example entry has been included.

PROPOSED HAS MODULES

Secret Module Name Module Capabilities

Sensor Characteristics Sensor Control Hidden in this module are the

sensor characteristic- that might
change if we replaced one sensor

with another that detivers the

same information. The programs
that take readings from sensors

are in this module; they know the

HAS-BEEN instruction sequences

that perform sensor input and the

hardware defined memory location

correqponding to each device.

R'i&.cD~iG IPAa BLAI&-RO p~jA L

qOFTWARE ENGINEERING PRINCIPLES 4-31

,-2' July 1980

Ink- 4d

SEC.4 / INFORMATION-HIDING MODULES

Secret Module Name Module Capabilities

I

4-32
SOFTWARE ENGINEERING PRINCHILES

14-25 July 19o%,u

cnIi

*1

- S - - - - - .-.--- - - ----- -.------------ ~

SPEC. 1 What are Specifications?

LECTURE

I. what Are "Specifications"?

A. General definition of specification

1. Specific information about the object

B. Engineering definition

1. Specific information about the requirements the object must meet

2. We will use it in the engineering sense

SOFTWARE ENGINEERING PRINCIPLES 5-1
14-25 July 1980

SEC. 5 / SPECIFICATIONS

II. Why Do We Need Specificaticas?

A. Multiperson projects

B. Multiversion projects

C. "Our inability to do much" (E. W. Dijkstra)

I. Each subtask should have a definition independent of the rest of
the job

5-2 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

__ __ __/ V,?

What Are Specifications? /Doc. SPEC. 1

D. Making early decisions explicit and precise

1. Intramodule assumptions

2. Decision postponement

III. Why Must Specifications be Precise?

A. Early, distributed design decisions are hard to correctI

B. Prevent incompatibility between parts

SOFTWARE ENGINEERING PRINCIPLES 5-3
14-25 July 1980

SEC. 5 /SPECIFICATIONS

C. Remove the need for excessive information distribution

D. Minimize forbidden assumptions

IV. Why Must Specifications be Abstract?

A. Abstraction -- one model, many realizations

B. Must allow many versions

5-4 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

I 7-

What Are Specifications? /Doc. SPEC. 1

C. State only requirements

example: fictitious sort

D. Less information to comprehend

E. User only concerned about that which he could eventually discover
for himself

V. What Do We Mean by Formal?

A. Not "superficial"

SOFTWARE ENGINEERING PRINCIPLES5-
14-25 July 1980

SEC. 5 ISPECIFICATIONS

B. Based on forms and rules

1. No chance of misinterpretation

2. Conceivably mechanically interpretable

VI. Wh Not English (German, French, Dutch,....?)

A. Interpretation may (often does) require an elaborate legal system

B. Examples of subtle ambiguities

1. Delivers the top of the stack

5-6 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

What Are Specifications? /Dac. SPEC. I

2. Delivers the address of the new PSW

3. Removes the top element from the stack

4. The date three months from today

VII. Stating the Visible Effects of Functions on Each Other

A. The basic technique of formal specifications

SOFTWARE ENGINEERING PRINCIPLES 5-7
14-25 July 1980

SEC. 5 / SPECIFICATIONS

B. Refusal to mention internal or invisible effects

1. The way to abstract specifications

C. Leaving some externally visible values undefined

I. The way to restrict statements to requirements

VIII. Stating the "Syntactic" Properties of Functions

A. Does the function have a value? What is itE type?

B. Input parameters -- how many? What type?

5-8 SOFTWARE ENGINEERING PPTNCIPLES

14-25 July 1980

What Are Specifications? / Doc. SPEC. 1

C. Output parameters -- how many? What type?

I. This infcrmation specifies the syntactically allowed calling

combinations

2. More information can be added by defining more types

IX. Stating the Semantic Properties of Functions

A. The immediately visible effects

B. Relations among functions (Fl + F2 3)

SOFTWARE ENGINEERING PRINCIPLES 5-9

14-25 July 1980

SEC. 5 / SPECIFICATIONS

C. Equivalent sequences -- enough to define all the effects

D. Effect after a sequence

References to "history"

X. Describing "Don't Cares"

5-10
SOFTWARE ENGINEERING PRINCIPLES

14-25 July 1980

What Are Specifications? /Doc. SPEC. I

XI. Describing Forbidden or Undesired Actions

A. Stating the allowed actions

B. Stating the effect-s of restriction violations

C. Specifying conventions for reporting internal errors

XII. Example: Stack With Limitations

SOFTWARE ENGINEERING PRINCIPLES 5-11
14-25 July 1980

7AD-A087 997 NAVAL RESEARCH LAB WASHINGTON DC F/6 9/2SOFTWARE ENGINEERING PRINCIPLES.U)
JUL 80 L J CHMURA, P CLEMENTS, C L HEITMEYER

UNCLASSIFIED

NEhI2 EIIIIpEEIIIIIIIIIIIIII

EEnhhhhohmhE-Ilullluuuuuum*ununnuuunnin
EIIIIIIII

11tH -.0 6~

11juL.!25 .11 I 1 6

M (J Ni fS OLUlo I t ', AAR

SEC. 5 / SPECIFICATIONS

XIII. Example! Stack Without Limitations

XIV. Example: Tree

XV. Example: Queue

XVI. Example: Sorting Queue

5-12 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

What Are Specifications? / Doc. SPEC. I

XVII. Completeness
and Consistency

A. Derivation of value or "undefined" for all sequences

B. Only one value derivable

XVIII. Important vs. Notational Aspects

A. Rules about content important

B. Syntactic invention still needed

SOFTWARE ZYGINEERING PRINCIPLES 5-13

14-25 July 1980

A . LM&.i

SEC. 5 / SPECIFICATIONS

C. Don't let syntax control content

XIX. References

Parnas, D. L. 1972. "A Technique for Software Module Specification with

Examples." Comm. ACM, vol. 15, no. 5, pp. 330-336.

Guttag, J. V. 1975. The Specification and Application to Programins of

Abstract Data Types. University of Toronto Computer Systems Research
Group Technical Report CSRG-59.

Parnas, D. L.; and Handzel, G. 1975. More on Specification Techniques

for Software Modules. Fachbereich Informatik, Technische Hochschule
Darmstadt.

Guttag, J. V. 1976. "Abstract Data Types and the Development of Data

Structures." Comm. ACM, vol. 20, no.
6 , pp. 396-404.

Parnas, D. L. 1977. "The Use of Precise Specifications in the

Development of Software." Proceed. of the IFIP 1977, pp. 861-867.

Liskov, B.; and Zilles, S. 1975. "Specification Techniques for Data

Abstractions." IEEE Trans. on Software Engineering, vol. SE-1,

no. 1, pp. 7-19.

Parnas, D.; and Bartussek, W. 1977. Using Traces to Write Abstract

Specifications for Software Modules; University of North Carolina
Report no. TR 77-012.

5-14 SOFTWARE ENGINERRING PRINCIPLES
14-25 July 1960

* SPEC.2 Using an Informal Functional Specification!

EXERCISE

Name:

Using the informal functional specification of the message holder module
given in document MP.5, answer the following questions. Single quotes enclose
a character string. Thus, 'RUSSIA' represents the six-character string RUSSIA.

1. What is the value of GET ROUTING INDICATOR after executing
SET ORIGINATOR ROUTING INDICATOR('RUSSIA')?

2. After executing SETTEXT(25,30,'tricky'), what is the value of

*1 GETTEXT(30,30)?

3. What is the effect of SETTEXT(25,25,'tricky')?

4. The original text is HAPPY BIRTDAY; what command will correct it?

5. The original text is HAPPY BIRTHDAY; what is the text after executing
BLANKIT(4)?

SOFTWARE ENGINEERING PRINCIPLES 5-15

14-25 July 1980

,. - a. .t".4 .

SEC. 5 1 SPECIFICATIONS

6. If the message already contains an addressee, what is the effect of
SETADDEE('SECNAV')?

7. We have executed BIND(47), stored some text in the message, and then
executed NEWMESSAGE(47); what happens as a result?

8. What will happen if a program executes SETSERIAL('serial')?

9. How long is the string GET TEXT(30,30)?

10. If the text of a message currently contains 35 characters, what is the
effect of SETTEXT(50,71,'MP SOFTWARE')?

5-16 SOFTWARE ENGINEKRING PRINCIPLES
14-25 July 1980

*1 -

!

SPEC.3 Formal Functional Specifications

LECTURE

I. Purpose: Stating Requirements that an Implementation of an Information-
Hiding Module Must Satisfy

A. State everything that is required

B. State nothing that is not required

C. Leave no room for doubt

IT. Three Views About Shoving Internals

A. Mention no internals

Why:

Why not:

SOITWARI ENGINEERING PRINCIPLES 5-17
14-25 July 1980

SIC. 5 / SPECIFICATIONS

B, Mention hypothetical "ridiculous internals"

Why:

Vhy not:

C. Mention hypothetical "suggested internals"

Why:

Why not:

III. Syntax in a Specification

A. What is a type?

S. "Presentation" presents type information

5-18 SOfTVARZ 3UIU3iIWG FIIICIPLU
14-25 July 1980

Formal Functional Specifications /Doc. SPEC.3

IV. What is a Trace?

A. Execution history of a module from creation

B. A subtrace is part of a trace

C. Notation for describing traces and subtraces

1. F(a, b, c)

2. E(a, b, c).Y(2, 3, 4)

3.L-

4. V(T)

5. Sn

SOFTWARE ENGINEERING PRINCIPLES 51
14-25 July 1980

SEC. 5 / SPECIFICATIONS

V. What Kiuds of Assertions Csw be Made About Traces?

A. Which traces must be legal?

B. When are two traces equivalent?

1. Equivalent traces must be indistinguishable from outside the
module

2. Two traces are not equivalent unless shown to be equivalent

C. Values of traces in terms of previously defined types

VI. Specification of an Unbounded Stack

ftgtax:

PUSH: (integer) x (stack>.t (stack)
POP: (stack).> (stack)
TOP: (stack>-> (integer>
DEPTH: (stack > (integer)

Semantics:

A. Legality:

(1) X(T) - %(T.PUSH(a))
(2) X(T.TOP) = X(T.POP)

5-20 SOFTWARX EGIMMIG PRINCIPLZS
14-25 July 1980

A. --AI

I

Formal Functional Specifications /Doc. SPEC.3

B. Equivalences:

(3) T.DEPTR a T
(4) T.PUSH(a).POP = T
(5) X(T.TOP) => T.TOP m T

C. Values:

(6))(T) > V(T.PUSH(a).TOP) - a

(7) X(T) ->V(T.PUSH(a).DEPTH) - 1 + V(T.DEPTH)
(8) V(DEPTH) = 0

The above specification assumes that only one stack exists and omits the

stack parameter in the trace assertions.

VII. Specification of an Unbounded Queue

Syntax:

ADD: (integer) x (queue) < (queue)
REMOVE: (queue) ((queue)
FRONT: (queue) -> (integer)

Semantics.:

A. Legality:

(1) X(T) ">)(T.ADD(a))

(2) X(T) u> X(T.ADD(a).REMOVE)
(3) X(T.REMOVE) X X(T.FRONT)

B. Equivalences:

(4) %(T.FRONT) > T.FRONT a T
(5) X(T.REHOVE) -> T.ADD(a).REMOVE a T.REMfVE.ArD(a)
(6) ADD(a).REMOVE _m..-

C. Values:

(7) V(ADD(a).FRONT) = a
(8) X(T.FRONT) -> V(T.ADD(a).FRONT) - V(T.FRONT)

The above specification assumes that only one queue exists and omits the
queue parameter in the calls on the access programs.

SOFTWARE ENGINEERING PRINCIPLES 5-21
14-25 July 1980

I -.

' -- _.,. c ' ,,, '-, ' "' --'' "

SEC. 5/ SPECIFICATIONS

VIII. Specification of a Sorting Queue

INSERT: (integer) x (squeue) -< squeue)
REM4OVE: (queue) -D- (squeue)
FRONT: (squeue) -> (integer)

Semantics:

A. Legality:

(1) X(T) >XCTINSERT(a))

(2) X(T) => (T.INSERT(a).REMOVE)
(3) X(T.FRONr) - X(T.REMOVE)

B. Equivalences:

(4) X(T.FRONT) w> T.FRONT aT
(5) T.INSERT(a).INSERT(b) =-T.I.NSERT(b).INSERT(a)
(6) TNSERT(a).REMOVE =-UL
(7) XCT.FRONT) cand CV(T.FRONT) ig b) -> T.INSERT(b).REKOVE T

C. Values:

k'8 V(INSERT(a).FRONT) -a
(9) XCT.FRONT) cand V(T.FRONT) !C b -> VCT.INSERT(b).FRONT) - b

NOTE: The value of X cand Y is false if X is false, and the value of X
cand Y is the value of Y is X is true. Y need not have a defined value if X
is a lse.

5-22 SOFTWARE ENGINEERING PRINCIPMES
14-25 July 1980

Formal Functional Specifications / Doc. SPEC.3

IX. Specification of a Stack that Overflows at the Bottom

Syntax:

PUSH: <stac) x <integer) - (stac)

POP: (stac)-> (stac)
VAL: (stac)-> (integer)

Semantics:

A. Legality:

For all T, x(T)

B. Equivalences:

0 < N i 124 -> PUSHN(ai).POp a PUSHN-I(ai)
PUSH(ao).PUSHl24 (ai) PUSH124 (ai)
T.VAL a T
N ! 0 => POPN.PUSH(a) = PUSH(a)

C. Values:

V(T.PUSH(a).VAL) = a mod 255

X. When is a Specification Complete? Do We Always Want Completeness?

XI. When is a Specification Consistent?

XII. Effect of Programming Languages

A. Lack of choices in some languages leads to simplification

SOFTWARE ENGINEERING PRINCIPLES 5-23
14-25 July 1980I - 7I

SEC. 5 / SPECIFICATIONS

B. Lack of "functions" leads to minor complication

C. User-defined types can simplify specifications

XIII. Dealing With Nonsequential Systems

XIV. Three Heuristics

A. Minimal subset approach

B. Looking for sequences that make the system "forget"

C. Canonical forms for showing completeness

XV. Open Problems

5-24 SOFTWAR ENGINEERING PRINCIPLES
14-25 July 1980

SPEC. 4 Coding Specifications

LECTURE

I. Motivation

A. It is sometimes useful to have a level of documentation between
module interface designs and module implementation code

1. Can ease maintenance (code is sometimes hard to read)

2. Can provide a useful form for reviewing module implementation
design decisions

3. Can enable the design of module implementations valid for more
than one language

B. Such documentation can ease problems that sometimes occur with
programmers responsible for implementing modules or parts of modules

1. May not have "big picture"

2. Will (naturally) optimize locally

SOFTWARE ENGINEERING PRINCIPLES 5-25
14-25 July 1980

- - --

SEC. 5 / SPECIFICATIONS

3. May not have much experience

4. May misinterpret requirements

II. What Are Coding Specifications?

A coding specification for a given program is a document in which
pseudo-code or abstract programs are used to constrain the selection of
algorithms and data structures or to specify them completely. Whatever the
extent of the constraints imposed, the coding specification should contain all
information (or references) required to write complete and correct code for
the program.

III. Why Not Just Write Programs?

A. The programming language may not be well-suited to communicating
algorithms to people

Examples: use of case, while, if ...then ...else.

if flag IF (FLAG). GO TO 10
then action_1; action 2
else action 2; GO TO 20

end-if; 10 action 1
20 CONTINUE

5-26 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Coding Specifications / Doc. SPEC.4

B. Since constraints imposed on different code may vary, we need a

degree of informality

Example: "sort A"

Va.

"sort A using algorithm efficient for N less than 15"

Vs.

"bubble sort A"

Vs.

"for I:= 1 step 1 to N do ... "

C. Often desirable to introduce special notation to aid in
specification, communication, or maintenance

1. Example: physical field references

R[5:91 or R["opfield"

vs.

RSHIFT(LSHIPT(R,4), 28)

2. Example: names instead of values

if I gt SYSNM then error(TOOBIG); end-if;

Vs.

if I gt 796 then error(3); end-if;

SOFTWARE ENGINEERING PRINCIPLES 5-27A 14-25 July 1980

SEC. 5 / SPECIFICATIONS

IV. Selecting a Code Specification "Language"

A. The actual programing language might be a suitable base

B. It should be straightforward to translate to the programing
language -- don't use a base like APL or LISP for coding
specifications if the system will be written in FORTRAN

C. Balance formality and informality

1. Formality can facilitate automatic indexing, cross-referencing,
and checking

2. Informality provides the advantages discussed in III

V. Using Coding Specifications

A. Have module designers write them and other designers review them

B. Have author and coder collaborate on necessary changes

5-28 SOFTWARE B2INERRINO PRINCIPLES
14-25 July 1980

Coding Specifications / Doc. SPEC.4

C. Have author review resulting code

D. Use in designing and analyzing system tests

E. Hay be appropriate to keep them current and use as long-term
documentation (depends on readability of code)

F. Keep on-line

G. Use utility programs

VI. Summary

SOFTWARZ ENGINEERING PRINCIPLES 5-29
14-25 July 1980

,.-- ~ a-

SEC. 5 / SPECIFICATIONS_________

CODING SPECIFICATION EXAMPLE

Interface Specification

)CLWTCT(

FUNCTION: Clears the contents of the write access counters (WcOUNT) for ATRTAB
entries other than labels, procedures, or constants.

COMM1ENTS AND DESCRIPTION: Counters can be incremented or cleared but not set
to a specific value.

CALLING SEQUENCE: CALL CLWTCT(ERRCODE)

PARAMETERS:

ERRCODE INT;R + or - the function identifier of caller
(EURINC) Codes:
<OK)
(ROBIND) =- no ATRTAB entry bound
(ILLTYP) -Rlabel, procedure, or

constant bound

Tables Referenced Entry Types Referenced Logical Components Referenced

ATRTAB ARRAY WCOUNT
REG WCOUNT
TREG WCOUNT
TFLAG WCOUNT

5-30 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

I

Coding Specifications /Doc. SPEC.4

Interface Specification

)INWTCT(

FUNCTION: Conditionally increments the vrite access counter (WCOUNT) for
ATRTAB entries other than labels, procedures or constants. If the
STATUS field indicates that counting is enabled, counting is
performed.

COMMENTS AND DESCRIPTION: Counters can be incremented or cleared but not set
to a specific value.

CALLING SEQUENCE: CALL INWTCT(ERRCODE)

PARAMETERS:

ERRCODE INT;R + or - the function identifier of caller
(ERRINC) Codes:
(OK)
(NOBIND) a no ATRTAB entry bound
(ILLTYP) a label, procedure or constant

bound

Tables Referenced Entry Types Referenced Logical Components Referenced

ATRTAB ARRAY WCOUNT
REG WCOUNT
TREG WCOUNT
TFLAG WCOUNT

SOFTWARE ENGINEERING PRINCIPLES 5-31
14-25 July 1980

SEC. 5 / SPECIFICATIONS

Coding Specification

Routines to clear access counters

ROUTINE [PHYSICAL FIELD]

>CLRDCT([READ COUNT]
)CLWTCT([WRITE COUNT]
)CLMOCT([MONITOR COUNT]

Routines to increment access counters

ROUTINE IPHYSICAL FIELD]

)INRDCT([READ COUNT)
)INWTCT((WRITE COUNT]
>INMOCT([MONITOR COUNT]

PARAMETER FTLES:

ACERRI.REQ (ERRINC) Codes for calling)ERR(
ACNAM.REQ Parameter definitions for routine name codes used for

calling)ERR(function
ACATIP.REQ ATRTAB entry type codes
ARFSIZ.REQ Parameters for array size declarations and table entry

size definition

COMMON BLOCK DEFINITION FILES:

ACSTOR.REQ Primary data structure for support of table access
routines

EXTERNAL REFERENCES:

ERR for error reporting

(Byte and As required to extract table entries
Halfword (See references (c), (d), and (e))
routines)

5-32 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Coding Speci fications /Doc. SPEC.4

ALGORITHM:

1* (ROUTINE) is the parameter containing the name of the routine being
coded. *

lif IDEBUG
Ithen /* code the following with 'D' in column 1I*

if ATRBD [ACSTOR) - -1
then

call ERR(ERRCODE, (IOBIND) + (EBRCSZ) * (ROUTINE))
return

end

if ATRTP fACSTOR) is not appropriate for the desired [PHYSICAL FIELD)
then

call ERR(ERRCODE, (ILLTYP) + (ERRCSZ) < ROUTINE>))
return

end

tend /* tDEBUG *

I if routine being coded clears a counter
Ithen

[PHYSICAL FIELD]:- 0

lelse /* routine must increment a counter *

if CTSTAT (ACSTOR)

then /* counting will be effective *

[PHYSICAL FIELD):- [PHYSICAL FIELD. + 1

end

lend

returnI

SOFTWARE ENGINEERING PRINCIPLES 5-33
14-25 July 1980

C

ACV

4fC

-"..A ,,9C

ABS. Abstract Interface Modules and Their Value

LECTURE

I. Introduction -- Review

A. The value of being explicit about design decisions and assumptions

1. Example -- the "fundamental assumptions" list for the A-7

2. Program families -- choosing the order of decisions

Difficulties:

3. Modules and information hiding

Difficulties:

B. What is an interface?

1. More than just syntax or format

SOFTWARE ENGINEERING PRINCIPLES 6-1
14-25 July 1980

K._____________

RM O

SEC. 6 /ABSTRACT INTERFACE MODULES

2. An interface between two programs is defined by the set of
explicit and implicit assumptions they make about each ocrler

IT. What's Special About DoD Software Interfaces?

A. Not just a question of size or real-time demands

B., Definition -- An embedded computer system is considered a module in

some larger system

C. Some distinguishing characteristics of embedded computer systems

1. Designer not free to define interface

2. Interface constraints may be strict and arbitrary, but we can't
ignore them

6-2 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

L.

Abstract Interface Modules and Their Value IDoc. ABS-l

3. Several similar interfaces may be involved

4. Interface will change during development

5. Cost of changing computer system not considered seriously when
changes in total system are made

6. Commercial contrasts

D. A contractual dilemma

1. Contract must constrain contractor by providing testable
specifications

2. For above reasons, final interface must be considered unknown

SOFTWARE ENGINEERING PRINCIPLES 6-3
14-25 July 1980

SEC. 6 / ABSTRACT INTERFACE MODULES

3. System for "wrong" interface will be hard to change

4. Lack of competition makes changes afterward unreasonably
expensive

13. Preponderance of embedded systems -- a parLi:1. explanation for the

nigh COL Ot DoD software

1. Reason may not be functional complexity, programming tools,
programmers' abilities

2. Technical advances can help

III. Examples of Embedded Systems

A. The address holder system (our programnming problem)

Constraints that may change:

6-4 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Abstract interface Modules and Their Value IDoc. ABS.1

B. MP

Constraints:

C. Radar data analysis systems

Constraints:

D. Computers in weapons systems -- e.g., TC-2 computer in the A-7

Constraints:

IV. Examples of Implicit Assumptions in an Interface and Their Effects on
Application Programs

A. Address holder

B. A-7

SOFTWARE ENGINEERING PRINCIPLES 6-5
14-25 July 1980

SEC. 6 / ABSTRACT INTERFACE MODULES

V. Applying "Information Hiding" to Solving the Interface Problem When
Externals Will Change

A. Review of information hiding

B. Use an "abstract interface" to "hide" the actual interface

VI. Abstract Interface Modules

A. What do we mean by abstract?

1. Do not mean vague or highly mathematical; abstract means
conceived apart from special cases

2. Abstract implies a many-to-one mapping that models some aspects
but not all

3. Examples of abstractions

a. circuit diagrams

6-6 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

I Abstract Interface Modules and Their Value /Doc. ABS.l

b. address holder assuptions

c. graphs

d. algorithms

e. data types

B. Why are abstractions useful?

1. If all properties of the abstract system correspond to
properties of the real system -- we can learn about the real
system by studying the abstraction

2. Abstraction is simpler (in principle, but abstract thinking may
be unfamiliar)

I SOFIVARE ENGINEERING PRINCIPLES 6-7
14-25 July 1980

_______A

SEC. 6 ABSTRACT INTERFACE MODULES

3. Results about abstraction may be "reused"

C. What is an abstract interface?

1. Represents many possible actual interfaces

2. Models some properties of actual interface but not all

3. All things true of the abstract interface are true of actual
interfaces

VII. How Can Abstract Interface Modules Help?

A. Define the abstract real-world interface

6-8 SOFTWARE ENINEERING PRINCIPLES
14-25 July 1980

Abstract Interface Modules and Their Value /Doc. ABS.1

B. Procure applications programs based on abstract interface,
preventing exploitation of facts that happen to be true of today's
actual interface

actual real-world interface

abstract inter- interface programs
face module I

abstract real-world interface

applications programs

Figure 1. Abstract Interface Module.
The interface programs implement one instance of the many-to-one mappingbetween the actual real-world interface and the abstract real-world interface.

SOFTWARE ENGINEERING PRINCIPLES 6-9
14-25 July 1980

SEC. 6 / ABSTRACT INTERFACE MODULES

C. When actual interface is fixed, build interface programs

D. "Real-World" changes that affect actual interface should only affect
the interface programs

E. Simple example -- a date interface. Possible formats in actual
interfaces:

February 10, 1941 (month day-in-month, year),
10 February 1941 (day-in-month month year),
10 February 41 (day-in-month month last-two-digits-of-year),
10.2.1941 (day-in-month.integer-encoded-month.year),
2/1011941 (integer-encoded-month/day-in-month/year),
41.2.10 (last-two-digits-of-year.integer-encoded-month.day-

in-month),
41 February 10 (last-two-digits-of-year month day-in-month),
41,41 (day-in-year,last-two-digits-of-year).
15015 (days since the first day of 1900)

VIII. How to Design an Abstract Interface Module

A. Prepare a list of assumptions about properties of all the possible
real-world interfaces to be encountered -- have this list reviewed

6-10 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

i-'-' W-

Abstract Interface Modules and Their Value / Doc. ABS.1

B. Express these assumptions by defining a set of "functions"
representing possible system inputs and outputs and by stating
relations between these functions

C. Perfor, consistency checks

1. Verify that any property of the function set is implied by the
assumptions

2. It should be possible to write bulk of system in terms of these
functions; if not, return to A

D. Contractor is required to write bulk of system in terms of the
functions defined in B, and programs must be correct for any
implementation of those functions that satisfies the description B

SOMNARE ENGINEERING PRINCIPLES 6-11
14-25 July 1980

SEC. 6 / ABSTRACT INTERFACE MODULES

E. Illustration of this procedure for the address holder (programing
exdMple)

1. Initial assumptions

The following items of information will be contained in
addresses and can be identified by analysis of the input data;
this information is the inly information that will be relevant
for our computer programs:

Last name
First name
Organization
Street address
City, state and zip code (single line with a comma between

city and state)

2. Objections

3. Refined assumptions

F. Another example -- abstract interfaces for the A-7 D~evice Interface
Module

6-12 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Abstract Interface Modules and Their Value / Doc. ABS.l

IX. Refining/Extending the Interface for a Subset of the Interfaces

A. Some useful applications programs may not be generally applicable

B. Confinement of the specialized program

C. Specialization (Refinement) by adding functions not generally

implementable

D. Specialization (Refinement) by stating additional properties of

functions

E. Deviant actual interfaces

F. The family tree again

SOFTWARE ENGINEERING PRINCIPLES
6-13

14-25 July 1980

Aa.

SEC- 6 / ABSTRACT INTERFACE MODULES

X. When Won't It Work?

A. Success depends on our ability to predict change (oracle assumption)

B. Success depends on existence of comonality between actual
interfaces (interface programs smaller than applications programs)

HI. Summary

A. An interface is equivalent to a set of assumptions

B. The abstract interface is a precise, formally specified interface

C. The abstract interface is a model of all "expected" actual interfaces

6-14 SOFTWARE ENGINEERING PRINCIPLES
14-25 July '980

Abstract Interface Modules and Their Value / Doc. ABS.I

D. Contractor is more tightly constrained than in conventional

procedure -- his program is not allowed to make assumptions that

limit applicability

E. Actual interface is met by writing additional programs -- not by

modifying programs that were written based on the abstract interface
definitions

XII. Abstract Interface Module as an Application of Fundamental Principles

A. Being explicit about assumptions and design decisions

B. Encapsulation of likely changes

C. Abstract interface modules can solve the embedded computer system

problem by hiding the embedding from the zomputer'

SOFTWARE ENGINEERING PRINCIPLES 6-15

14-25 July 1980

SEC. 6 / ABSTRACT INTERFACE MODULES

D. Abstract interface modules are just a special case -- use same
method for other informat ion hiding modules

X111. Reference

Parnas, D. L. 1977. Use of Abstract Interfaces inl the Development of
Software for Embedded Computer Systems. Naval Research Laboratory
Report no. 8047.

6-16 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1080

ABS.2 Using the MP Abstract Interface

EXERCISE

Name:

The message on page 6-20 has been assembled according to the riessage
format rules in the original MP design (MP.3). These rules are summarized on
pages 6-18 and 6-19 of this exercise.

Your job is to use the abstract interface functions in MP.6 to assemble
the same message. To do this, complete the list of function alls started
below.

CREATE(bdaymsg)

SETORIGINROUTEPART(bdaymsg, DB)

SET CHANNELID(bdaymsg, 3)

SOFTWARE ENGINEERING PRINCIPLES 6-17
14-25 July 1980

t,

Using the MP Abstract Interface I Doc. ABS.2

MESSAGE FORMAT FROM ORIGINAL MP DESIGN

To summarize the original ? P message format, we provide a few general
rules, a message template, and a list of the fields in the template.

General rules

A message consists of a number of Format Lines numbered beginning with
one. (These -re abbreviated FLI FL2, etc.) Capital letters represent
themselves, and where given, must appear exactly. Where information is to be
supplied, a lower-case name will appear, explained in the list below. Where
items are optional, they are enclosed in square brackets; where a choice of
items is permitted, these are shown one above the other. The spaces shown are
nonrepresentative: the characters begin in the first column, and continue to
the end of the format line without spacing unless explicit spaces are indicated

by the symbol b. Each line ends with a sequence of two-carriage-returns-and-a-
line-feed, not shown. When an item is superscripted, it is repeated that many
times; superscript n means an indefinite repeat (but at least once).

Fields in the message template

The following list describes the form and content of the fields in the
template, given on the next page.

"origin-route-part": 2-letter part of the originating routing code (the
3rd-last and 2nd-last letters of the code),

"channel": 3-digit number identifying the channel,
"precedence": 1-letter code from a standard list,
"origin-media": 1-letter language media code from a standard list,
"dest-media": 1-letter language media code from a standard list,
"classification": 1-letter security classification letter from a

standard list,
"content-action": 4-letter identifier from a standard list,
"sender-orig-route": 7-letter routing indicator of the sender,
"serial": 4-digit number supplied by the sender,
"day-in-year": 3-digit Julian day-of-the-year, for date when message

created,
"time": 4-digit GCT at which the message created,
"addressee-route" 7-letter routing indicator for the addressee,
"year": 2-digit year when message created, e.g., 76 for the

bicentennial year,
"originator" either "sender-orig-route" or plain text,
"addressee": the plain text corresponding to the routing indicator

it follows. (In the final addressee item the period
replaces the comma, and similarly in FL8, 9.)

"subj-code": 6-character code composed of the letter N and 5 digits
"text": the message text.
"null": an empty line (but with the usual ending),
If" line-feed.

FMGZMNG PAGE BLANK-NoTmA"~.

SOFTWARE ENGINEERING PRINCIPLES 6-19
14-25 July 1980

Using the MP Abstract Interface / Doc. ABS.2

Message template

FLI: VZCZC origin-route-part channel

FL2:
precedence origin-media dest-media classification

content-action b sender-orig-route serial b date

time b classification4 addressee-route

FL3: DE b sender-orig-route serial date time b year

FL4: ZNR b classification5 T [addressee-route]

FL5:

JAN
precedence b day-in-year time Z b ... b year b

DEC

FL6: FM b originator

FL7: TO b [routing / addressee,]n.

FL8: [INFO b [routing / addressee,]n .1

FL9: [XMT b [routing / addressee,]n .]

FL11: BT

FL12: classification //subj-code// text

FL13: BT

FL15: # serial

FL16: null If7 NNNN

EIwts pA s BLaL-NOT Fio&D

SOFTWARE ENGINEERING PRINCIPLES 6-21
14-25 July 1980

Using the MP Abstract Interface / Doc. ABS.2

MESSAGE TO BE REASSEMBLED

VZCZCDBOO3

RTTUZYUW RUCLDBA2355 1861200 UUUURUHHLFA

DE RUCLDBA23551861200 76

ZNR UUUUU

R 1861200Z JUL 76

FM COMNAVTELOOM WASHINGTON DC

TO RUHHLFA/ALCOM.

BT

U//N09999//

HAPPY BIRTHDAY

BT

#2355

(8 blank lines)

NNNN

MMML1U Pig~, BLAi-NOT nuz

SOFTWARE ENGINEERING PRINCIPLES 6-23
14-25 July 1980

IIi

ABS.3 Using the MP Abstract Interface

EXERCISE SOLUTION

CONSTRUCTING MESSAGES WITH THE MP ABSTRACT INTERFACE

CREATE(BDAYMSG)

SET ORIGINROUTEPART (bdaymsg, DB)

SETCHANNELID(bdaymsg, 3)

SET PRECEDENCE(bdaymsg, R)

SETORIGIN_MEDIA(bdaymsg, T)

SETDESTMEDIA (bdaymsg, T)

SETCLASSIFICATION (bdaymsg, U)

SETCONTENTACTION(bdaymsg, ZYUW)

SETSENDERORIGROUTE(bdaymsg, RUCLDBA)

SETSERIAL(bdaymsg, 2355)

SETDATECREATED (bdaymsg, JILIAN(76, 186))

SET TIMECREATED (bdaymsg, CLOCK24(12, 00))

SETADDRESSEEROUTE(bdaymsg, RUHHLFA)

SETORIGINATOR(bdaymsg, COMNAVTELCOM WASHINGTON DC)

SET TOLIST (bdaymsg, RUHHLFA, ALCOM)

SETSUBJECT_CODE(bdaymsg, N09999)

SETTEXT(bdaymsg, HAPPY BIRTHDAY)

COMMENTS

I. The 'SET' functions may be called in any order; the abstract interface
programs arrange the information in the order required by the message format.

RIaG PAGE BLANK-NOT F1.LkD

SOFTWARE ENGINEERING PRINCIPLES a-z
14-25 July 1980

4 - -- -~ __________.._________,._______.____o_______

SEC. 6 / ABSTRACT INTERFACE MODULES

2. No function calls are needed for control characters such as "VZCZC"; these
are inserted by the abstract interface programs.

3. A given 'SET' function need be called only once, even if the information
appears in the message several times. For example, even though "precedence"
is inserted in both FLI and FL5, 'SET PRECEDENCE' need only be called once.
The abstract interface programs take care of the repetition.

4. Even though the date appears in two forms (see FL3 and FL5),
'SETDATECREATED' need only be called once. The abstract interface programs
can compute the information required for both forms from the date variable it
receives as the 'SETDATECREATED' parameter.

6-26 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

________________ -

Ii

f I;;

I
I

d
I.

'I *~

HIE. 1 Hierarchy Survey

LECTURE

I. Introduction

A. Much disagreement about benefits and disadvantages of hierarchical

structures for computer software

B. Many different things meant by "hierarchical structure"

C. Nontrivial hierarchical structures always imply restrictions placed
on the programmer

1. Restrictions may result in disciplined programming and a quality
product

2. A given set of restrictions may not be appropriate for all
situations

D. Purpose of lecture: survey of several well-known hierarchical

structures

SOFTWARE ENGINEERING PRINCIPLES 7-1

14-25 July 1980

SEC. 7 / HIERARCHICAL STRUCTURES

11. Definition of Structure

A. Division into parts

B. Relation between parts

C. Structure graphs

III. Definition of Hierarchical Structure

A. A structure with no loops in its relation

hierarchy not hierarchies

A

B/ I\\C
\D

B. Before you know vhat someone means by a hierarchical structure, you
must know the parts and the relation

7-2 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Hierarchy Survey /Doc. HIE.!

C. Hierarchies not necessarily trees

IV. The Uses Hierarchy

A. Parts: programs

Relation: uses

Time: late design time

B.. Definition of uses:

Given program A with specification Sa and program B9 we say that A
uses B if A cannot satisfy Sa unless B is present and satisfies
some nontrivial specification Sb. The assumed specification Sb
may differ for different users of B

C. Differences between call and use

1. Calls that are not uses

2. Uses that are not calls

SOFTWARE ENGINEERING PRINCIPLES 7-3
14-25 July 1980

SEC. 7 / HIERARCHICAL STRUCTURES

3. Example: hardware for division

uses power supply

but calls divide by 0 routine

D. Virtual-machine analogy

E. Found in T.H.E., also in many examples of structured programming

F. Advantages

1. Availability of tailored subsets

2. Fail-soft capabilities when UEs occur

3. Incremental development

countfr eranplk: Multics fiLe system

7-4 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

!2

Hierarchy Survey /Doc. HIE.I

4. Code duplication avoided

V. The Gives Work Hierarchy

A. Parts: processes

Relation: gives an assignment to

Time: run time

B. Found in T.H.E.

C. Useful in guaranteeing termination and preventing deadlock; neither

necessary nor sufficient

D. In T.H.E. system uses and gives work hierarchies coincide

SOFTWARE ENGINEERING PRINCIPLES 7-5
14-25 July 1980

SEC. 7 / HIERARCHICAL STRUCTURES

if[. The Resource Allocation Hierarchy

A. Parts: processes

Relation: allocates a resource to, or owns the resources of

Time: run time-

B. Applicable with dynamic resource administration only

'."AlIo~ates to" vs. "controls": the question of preemption

D. Advantages:

1. Interference reduced or eliminated

2. Deadlock possibilities reduced

E. Disadvantages

1. Poor utilization when load unbalanced

7-6 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Hierarchy Survey / Doc. HIE.1

2. High overhead when resources are tight (especially with many

levels)

VII. The Courtois Hierarchy

A. Parts: operations

Relation: takes more time and occurs less frequently than

Time: run time

B. Economics analogy

C. Approximately decomposable systems

D. T.H.E. comparison

SOFTWARE ENGINEERING PRINCIPLES 7-7j 14-25 July 1980

SEC. 7 / HIERARCHICAL STRUCTURES

VT11 Th MouleDecomposition Hierarchy

A. Parts: modules

Relation: part of

Time- early design time

B. All of a module's functions are not on the same level of the uses
hierarchy. Not all functions need be offered in all system subsets

(7. Never a loop in "part of" -- module decomposition always a hierarchy

IX. The Created Hierarchy

A. Parts: processes

Relation: created

Time: run time

B. Must be ai hierarchy (father in older than son)

7-8 SOFTWARE ENGINEERING PRINCIPLES
14-2' July 1980

Hierarchy Survey /Doc. HIE.1

C. Why a tree? -- team work in creating progeny is accepted practice

D. Sometimes implies unnecessary restrictions

I. Father cannot die till all progeny die

2. Progeny die when father dies

X. The Protection Hierarchy (Multics)

A. Parts: system components

Relation: can access the data of

Time: design time and run time

(decisions made al design time, enforced at run time)

B. Disadvantage: Violate Need to Know principle

XI. Conclusions

A. When someone tells you "the software is hierarchically structured"

SOFTWARE ENGINEERING PRINCIPLES 7-9

14-25 July 1980 '

S c. 7 / HIERARCHICAL STRUCTURES

I. Find out what they mean (What are the parts? What is the
relation?)

2. Evaluate appropriateness for particular application

B. Forcing different structures to coincide may lead to an unrealistic
design.

XII. References

A. General:

Parnas, D. L. 1974. "On a 'Buzzword': Hierarchical Structure."

Proceed. of IFIP Congress 74.

B. Uses:

Dijkstra, E. W. 1968. "The Structure of the 'T.H.E.' Multiprogramming

System." Comm. ACM, vol. 11, no. 5, pp. 341-346.

Parnas, D. L. 1976. Some Hypotheses About the Uses Hierachy for
Operating Systems. Technical Report. Darmstadt, W. Germany:
Technische Hochschule Darmstadt.

Parnas, D. L. 1968. "Designing Software for Ease of Extension and
Contraction." IEEE Trans. on Software Engineering, vol. SE-5,

no. 2, pp. 128-137.

C. Gives work:

Habermann, N. 1969. "Prevention if System Deadlocks." Comm. ACM,

vol. 15, no. 3, pp. 171-176.

7-10 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

__ _ __ ____

- a i-.-. a.-.'k

Hierarchy Survey /Doc. HIE.1

Dijkstra, E. W. 1968. "The Structure of the 'T.H.E.' Multiprogramming
System." Comm. ACM, vol. 11, no. 5, pp. 341-346.

D. Owns Resources:

Brinch Hansen, P. 1970. "The Nucleus of a Multiprogramming System."

Comm. ACM, vol. 13, no. 4, pp. 238-241, 250.

E. Shorter Duration -- Higher Frequency:

Courtois, P. J. 1975. "Decomposability, Instabilities and Saturation
in Multiprogramming Systems." Comm. ACM, vol. 18, no. 7,
pp. 371-377.

Courtois, P. J. 1977. Decomposability: Queuing and Computer System
Applications. New York: Academic Press.

F. Module Decomposition:

Parnas, D. L. 1972. "On the Criteria to be Used in Decomposing

Systems into Modules." Comm. ACM, vol. 15, no. 12, pp. 1053-1058.

G. Created:

Brinch Hansen, P. 1970. "The Nucleus of a Multiprogramming System."

Comm. ACM, vol. 13, no. 4, pp. 238-241, 250.

SOFTWARE ENGINEERING PRINCIPLES 7-11
14-25 July 1980

HIE.2 Designing a Uses Hierarchy

LECTURE

I. Goals

A. Program families: different installations require different
capabilities

1. Systems with different capacities

2. Systems with different degrees of flexibility

3. Spectrum: ONE to FIXED to VARYING

B. Adjustable systems* easy to extend or -subset

I. Ability to remove functions to make room for other functions

CRWMIUG PAGE -OT Fhuzg *"

SOFTWARE ENGINEERING PRINCIPLES 7-13
14-25 July 1980

-4--- -.- _7-

SEC. 7 / HIERARCHICAL STRUCTURES

2. Fail-soft response to undesired events

II. Alternatives Available to the Software Procurer

A. The super system

I. Generality costsl

B. A system for the "average" user

C. A set of independently developed systems

* D. A subsettable super system -- each family member offers a subset of
the services provided by the largest member

1. Individual installations only pay for what they need

7-14 SOFTWARE ENGINEERING PRINCIPLES

14-25 July 1980

r -. ----- _

Designing a Uses Hierarchy /Doc. HIE.2

2. Ability to extend by adding programs, not changing existing
programs

3. Incremental implementation possible

III. Uses Hierarchy, Reviewed

A. Parts: programs, not modules

B. Relation: "requires correct operation of"

C. When defined: late design time

D. Purpose: additioral specifications for programmers

SOFTWARE ENGINEERING PRINCIPLES 7-15
14-25 July 1980

SEC. 7 /HIERARCHICAL STRUCTURES

E. Why important

I. Determines possible subsets

2. Determines possible 'ail-soft modes

3. Affects order of program integration

7-16 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980j

Designing a Uses Hierarchy /Doc. HIE.2

F. Design error: loops in uses hierarchy

request and release
memory for tables

TABLE HANDLING MEMORY

PROGRAMS ALLOCATOR

use tables to keep track

of memory assignments

Two dangers:

1. Memory allocator and table generator use each other

-- Neither works until both work

-- If either is removed, system no longer works

2. Memory allocator builds own tables

-- Code duplication

SOFTWARE ENGINEERING PRINCIPLES 7-17
14-25 July 1980

_____ I V

SEC. 7 / HIERARCHICAL STRUCTURES

IV. Basic Steps in the Design of a Subsettable System

A. Requirements Definition: identify the subsets first

B. List programs belonging to each module

I. Access programs

2. liternal programs -- cannot be used by programs outside the
module

3. Main programs -- cannot be used -- top level in uses hierarchy

C. For every pair of programs, three possibilities

A may use B

B may use A

7-18 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

i V '

Designing a Uses Hierarchy /Doc. HIE.2

Neither may use the other

D. List programs- at level 0: programs that use no other programs

E. Work up from there

-- Level 1 programs use only level 0 programs

-- Level 2 programs use only level 0 or level I programs, etc.

F. Four conditions for allowing program A to use program B

1. A is simpler because it uses B

-- lnformation retrieval programs in NP simpler because they
use page storage programs- don't have to know details of
memory handling

2. B is not much more complex because it is not allowed to use A

-- Page storage programs: wouldn't be simpler if they used
information retrieval programs

SOFTWARE ENGINEERING PRINCIPLES 7-19
14-25 July 1980

SEC. 7 /HIERARCHICAL STRUCTURES

3. There is a useful subset containing B and not A

-- Page storage programs useful for other purposes besides
Information Retrieval, e.g., for implementing Message
Holder programs

4. There are no useful subsets containing A and not B

-- No reason to have Informxat ion Retrieval without memory
(Page Storage)

G. Refinement through sandwiching -what to do if the four conditions
don't bold

request and release memory for
tables that vary in size

store and retrieve
data in previously MMR
created tables LOAR

keep track of memory assignment -

in fixed size tables

7-20 SOFTWARE ENGINEERING PRINCIPLE~S
14-25 July 1980

..

Designing a Uses Hierarchy / Doc. HIE.2

(V. Result: Layers of Virtual Machines

A. Definition: A set of objects and operations, implemented in

software, that could conceivably be provided by hardware

B. Applications programs are simpler because they use virtual machine
programs

C. Resources used to implement a low-level program not availabl.e to a
high-level program that uses it

SOFTWARE ENGINEERING PRINCIPLES 7-21
14-25 July 1980

SEC. 7 /HIERARCHICAL STRUCTURES __________________

D). Example from the MADDS example: Layered virtual machines

VI.~ " DeiigSsets Fromeanes ie-rarh

A. Rules

1. Chalavte ouiIte peryl

14-2 Julyl19

I. Cn leve ot uper lvel

Design'ng a Uses Hierarchy / Doc. HIE.2

2. Can leave out parts of levels

3. If program A left out, must leave out all programs that use it

B. Example: Part of hierarchy for family of systems with different

capacities

ASM: ADDRESS STORAGE MODULE

ASM operations, varying number of entries
(GET SET)

ASM oeainCreate ASM entry Delete ASM entry

i xed number ofenrs

(GET SET)

SOFTWARE ENGINEERING PRINCIPLES 7-23
14-25 July 1980

SEC. 7 /HIERARCHICAL STRUCTURES

C. Example: Part of hierarchy for family of systems with different
degrees of flexibility

7 ormat swapper nput, fixed format Input format generator

D. Example: Part of hierarchy for single system that can be subsetted
easily

I *Airborne Full Partial ,'SINS alignment '
*alignment navigation navigation

Doper-
damped
inertial/
velocity

Doppler /Inertial Is
*interface ,'platform inte~rface

/ interface

'Arithmetic data types

7-24 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 18

- - --. - - __ _-4

Designing a Uses HiercyIDc E.

VII. Evaluation Criteria for a Uses Hierarchy: What are the Coals?

A. Elegance and simplicity

B. Avoid duplication

C. The existence of an appropriate subset for each application
situation ("Without consideration of subsets, anything goes")

VIII. Observations

A. Uses hierarchy as a compromise between

1. Letting any program use any other -- excessive dependencies

2. Not letting anything use anything -- duplication

SOFTWARE ENGINEERING PRINCIPLES 7-25
14-25 July 1980

SEC. 7 / HIERARCHICAL STRUCTURES

IX. References

Parnas, D. L. 1976. Some Hypotheses about the "Uses" Hierarchy for
Operating Systems. Technical Report. Darmstadt, W. Germany:
Technische Hocnschule Darmstadt.

Parnas, D. L. 1979. "Designing Software for Ease of Extension and
Contraction." IEEE Trans. on Software Engineering, vol. SE-5, no. 2,
pp. 128-137.

7-26 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

-

HIE.3 Uses Hierarchy for an Address System

EXERCISE

Nam e:

The diagram on the next page shows the uses hierarchy for a hypothetical
address system. The same facilities are offered on several levels, with
expanded resources on the upper levels.

Study the diagram and answer the questions that follow.

SOFTWARE ENGINEERING PRINCIPLES 7-27
14-25 July 1980

7It7

-:c. 7 / HIERARCHICAL STRUCTURES

CREATE and DELETE LEVEL 2
Address entries

using both variable-sized in-core storage
and backup storage

8

I I
-i nd GET CREATE and DELETE CREATE and DELETE LEVEL I
-ess fields Address entries using Address entries using

the table both fixed in-core variable-sized in-core
::tly on storage and storage

',ip 'L-.torage backup storage
6 7

r-,i (ET SAVE and CREATE and GET and FREE LEVEL 0
Add:,z RETRIEVE DELETE in-core storage
Fields with Address Address 4
an In-core Entries Entries
table from using fixed-size

1 backup in-core storage
storage 3

2

Remember that programs on the higher levels use, rather than duplicate,
the code in the lower level programs. For example, component 3 assumes that
it has a fixed memory space, but the size is a parameter. If higher levels
are not available and the size is exceeded, an undesired event occurs. If the
size is exceeded and component 7 is available, it uses component 4 to get
additional space, then changes the parameter value. Then component 3 can be
used to create the new entry.

Note: We have combined the pairs GET/SET, SAVE/RETRIEVE etc. into single
components in order to make the example simpler. This is not necessary, since
there may conceivably be systems in which only one member of the pair is
needed For example, if the address file is -reated as a read-only data
structure, GET functions will be needed but SET functions will not.

7-28 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

_____ _____ _____ A .1

Uses Hierarchy for an Address System /Doc. RIE.3

A Part 1: Subsets with Different Capabilities

Each of the systems described below can be built with components in the
uses hierarchy. Figure out which components are required for each system.
Circle or underline the numbers b-elow each description corresponding to all of
the required components.

Example

An address system with a fixed number of entries, all in main storage.

1 2 3 4 5 6 78

1.System A: An address system with a varying number of entries, all in main
storage. The maximum table size, and therefore maximum number of entries, is
fixed at system initialization.

1 2 3 4 5 6 7 8

2. System B: An address system with a varying number of entries, all in main
storage. Main storage space is dynamically allocated and freed as the number
of entries changes.

1 2 3 4 5 6 7 8

3. System C: An address syste.m with a varying number of entries. The main
storage allotment is fixed, so that when it is full, overflow entries must be
stored in backup storage.

1 2 3 4 5 6 7 8

4. System D: An ar-dresb2 system with a large constant number of entries which
do not all fit in~ the main storage allotment at-once. The overflow entries
are stored in backup storage.

1 2 3 4 5 6 7 8

5. System E: A very large capacity address system, with a varying number of
entries. Main storage is dynamically allocated as the number of entries
changes. When the number of entries exceeds a certain number, the overflow
entries are stored in backup storage.

1 2 3 4 5 6 7 8

SOFTWARE ENGINEERING PRINCIPLES 7-29
14-25 July 1980

SEC. 7 / HIERARCHICAL STRUCTURES

Part 2: Degraded Modea

1. Which of the above subsets would still operate fully if the backup device
went down?

2. Which of the above subsets would still operate fully if a large area ofore went down so that the program can no longer be allocated additiona.merrorv? (Assume the area occupied by the program has not gone down.)

3. Which subsets would still operate fully if both these UEs occurred?

7-30
SOlYARE ENGINEERING PRINCIPLES

14-25 July 1980

4-

HIE .4 Uses Hierarchy for an Address System

EXERCISE SOLUTION

In part 1, for each component that you decided to include, you should have
also included all the components on lower levels used by that component. In
the solutions on the next page, the components that should be included are
underlined.

SOTWARE ENGINEERING PRINCIPLES 7-31i
14-25 July 1980

SEC. 7 IHIERARCHICAL STRUCTURES

Part 1: Subsets with Different Capabilities

I. System A: An address system with a varying number of entries, all in main
storage. -The size of the in-core storage, and therefore the table size, 's
fixed at system initialization.

Answer:

1 2 3 4 5 6 7 8

2. System B: An address system with a varying number of entries, all in main
storage. Main storage space is dynamically allocated and freed as the number
of entries changes.

Answer

1 2 3 4 5 6 7 8

3. System C: An address system with a varying number of entries. The main
storage allotment is fixed, so that when it is full, overflow entries must be
stored in backup storage.

Answer:

1 2 3 4 5 6 7 8

4. System D: An address system with a large fired number of entries which do
not all fit in the miain storage allotment at once. The overflow entries are
stored in backup storage.

Answer*

1 2 3 4 5 6 7 8

5. System E: A very large capacity address system, with a varying number of
entries. Main storage is dynamically allocated as the number of entries
changes. W.hen the number of entries exceeds a certain number, the overflow
entries are stored in backup storage.

Answer:

1 2 3 4 5 6 7 8

7-32 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Uses Hierarchy for an Address System IDoc. HIE.4

Part 2: Degraded Modes

1. Which of the above subsets would still operate fully if the backup device
went down?

None of the systems that use component 2 could be included.

Therefore only system A and system B could continue to operate.

2. Which of the above subsets would still operate fully if a large area of

core went down so that the program can no longer be allocated additional
memory?

If a large area of core went down, the system is essentially

restricted to a fixed area. Therefore only system A, system C, and system
D would continue to work, since they do not use component 4.

3. Which subsets would still operate fully if both these UEs occurred?

Only systems using neither component 2 nor component 4 would continue

to work -- system A.

Comment

In each of these UE situaLions, some capability is left, even though it

may be very restricted. For example, if system E were in operation when the
backup store went down, an appropriate UE response might be to continue

operation using system B. System B could process the addresses that were in
core when the UE occurred, and print a message whenever requested to access an
address not in core.

Thus, this software allows for fail-soft operation when resources go down.

SOFTWARE ENGINEERING PRINCIPLES 7 -33

14-25 July 1980

4

I

I

'~1~

U

a
WI'
2

S -

4.p' A,

I ,&7~ - ~7 - - --- ~---~-- -

LANG.1 Language Selection

LECTURE

I. Introduction

A. Most of ideas discussed in this course are independent of language

B. But languages can help or hurt; the choice is significant

II. Four Views of a Programming Language

A. A notation for describing classes of computations

B. A convenient way to instruct computers

C. "VIGILANTE"; an enforcer of rules of good practice

SOFTWARE ENGINEERING PRINCIPLES 8-1

14-25 July 1980

SEC. 8 / LANGUAGE CONSIDERATIONS

D. An efficient mechanism for invoking special, previously written

programs

I[I. Four Corresponding Language Evaluation Criteria

A. How easy is it to tell which computations are possible
(verification)?

1. How well cAn you control the machine?

C. How "structured" (restrictive) is it? Does it allow bad practices?

D. How "rich" is it?

8-2 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Language Selection / Doc. LANG.l

IV. The Four Views and Evaluation Criteria Conflict

A. Examples

B. Many choose one view and ignore all others

C. Choosing is reasonable for R&D (separation of concerns)

D. But system developers must resolve the conflicts

1. All views have some validity and should be weighed

2. Sometimes one can accomplish an objective with a non-language

means

example: allow designers to determine coding restrictions

example: obtain an efficient library mechanism

SOFTWARE ENGINEERING PRINCIPLES 8-3
14-25 July 1980

]1

SEC. 8 / LANGUAGE CONSIDERATIONS

example: put machine dependent "features" in library

System Designers and Developers Have Additional Evaluation Criteria

A. In what ways does the language help the designer?

1. Be free of surprises

2. Allow straightforward translation to efficient code

3. Help the designer enforce his information-access policies

4. Make it easy and efficient to use programs written by others

5. Make no assumptions about the desired response to runtime errors

8-4 SOFTWARE ENGINEERING PRINCIP
T VS

14-25 July 1980

Language Selection /Doc. LANG.1

6. Don't constrain implementation of parallel processes

7. Provide nonrestrictive looping structures

8. Help in confining assumptions and decisions

9. Facilitate user-defined data types and abstract data types

B. In what ways doep the translator and related support help the

designer/developer?

1. Give user-level diagnostics in terms of "write-time" structure

2. Debugging aids

SOFTWARE ENGINEERING PRINCIPLES 8-5
14-25 July 1980

e .

Mlik z A

SEC 8*/LANGUAGE CONSIDERATIONS

3. Preprocessor systems

a. Advantages

b. Disadvantages

4. Library of useful programs

5. System management and integration tools

6. Manuals, texts, etc.

VI. What to do if No Supportive Language is Available?

A. Use naming conventions in place of scope rules

8-6 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

J_ Language Selection / Doc. LANG.l

B. Include runtime access-restriction code that can be removed later

C. Use the surprise-free subset

D. Use the efficient subset

E. Use the Lransportable subset

F. Postpone coding and debugging; spend more time on detailed design

and evaluation

G. Use coding specifications

SOFTWARE ENGINEERING PRINCIPLES 8-7

14-25 July 1980

- _ --

SEC. 8 / LANGUAGE CONSIDERATIONS

H. Write support software -- see Section V.B.

VII. General Remarks About the Selection Process

A. Look at all of the code that will be in the system

B. List the implied design de-isions explicitly

C. Beware of productivity arguments

D. How well is the language supported?

VIII. Conclusions

A. "Right language" is not possible, necessary, or sufficient

8-8 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

- - _ _ __-__ __ _ _ _ _ __ _ _ _ __ _ _

Language Selection / Doc. LANG.l

B. Some help more than others

C. Some hurt more than others. Language designers make assumptions on
how their language will be used. Check the implicit assumptions

D. Discipline in program design is what matters

IX. References

Parnas, D. L. 1971. "Information Distribution Aspects of Design
Methodology." Proceed. of IFIP Congress 71.

Parnas, D. L. 1972. "On the Criteria To Be Used in Decomposing Systems
into Modules." Comm. ACM, vol. 15, no. 12, pp. 1053-1058.

Brinch Hansen, P. 1975. "The Programming Language CONCURRENT PASCAL."
IEEE Trans. on Software Engineering, vol. 1, no. 2, pp. 199-207.

Parnas, D. L.; Shore, J. E.; and Elliot, W. D. 1975. On the Need for
Fewer Restrictions in Changing Compile-Time Environments. Naval
Research Laboratory Report no. 7847.

Linden, T. A. 1976. "The Use of Abstract Data Types to Simplify Program
Modifications." Proceed. of Conf. on Data: Abstraction, Definition
and Structure. SIGPLAN Notices, Special Issue, vol. 11, pp. 12-23.

Parnas, D. L. 1976. "On the Design and Development of Program Families."
IEEE Trans. on Software Engineering, vol. SE-2, no. 1, pp. 1-9.

SOFTWARE ENGINEERING PRINCIPLES 8-9
14-25 July 1980

SEC. 8 / LANGUAGE CONSIDERATIONS

Parnas, D. L.; Shore, J. E.; and Weiss, D. M. 1976. "Abstract Data Types
Defined as Classes of Variables." Proceed. of Conf. on Data:

Abstraction, Definition and Structure. SIGPLAN Notices, Special
Issue, vol. 11, pp. 149-154. Also Naval Research Laboratory Report
no. 7998.

Parnas, D. L.; and Wurges, H. 1976. "Response to Undesired Events in

Software Systems." Proceed. of Second International Conf. on
Software Engineering, pp. 437-446.

Dijkstra, E. W. 1977. A Discipline of Programming. Englewood Cliffs:

Prentice Hall.

Wirth, N. 1977. "MODULA: A Language for Modular Multiprogramming."
Software -- Practice and Experience, vol. 7, no. 1, pp. 3-35.

Wirth, N. 1977. "The Use of MODULA." Software -- Practice and

Experience, vol. 7, no. 1, pp. 37-65.

Wirth, N. 1977. "Design and Implementation of MODULA."
Software -- Practice and Experience, vol. 7, no. 1, pp. 67-84.

Wirth, N. 1977. "Towards a Discipline of Real-Time Programming."

Comm. ACM, vol. 20, no. 8, pp. 577-583.

Liskov, B.; et al. 1977. "Abstraction Mechanisms in CLU." Comm. ACM,
vol. 20, no. 8, pp. 564-576.

Dahl, 0. J.; Dijkstra, E. W.; and Hoare, C. A. R. 1972. Structured

Programming. London: Academic Press.

Liskov, B.; and Zilles, S. 1974. "Programming with Abstract Data Types."

SIGPLAN Notices, vol. 9, no, 4, pp. 50-59.

Elsom, M. 1973. Concepts of Programming Languages. Chicago: Science
Research Associates.

8-10 SOFTWARE ENGIrEERING PRINCIPLES
14-25 July 1980

-t ----.- -- -- - --------

LANG.2 Ada

LECTURE

I. Ada Hlistory

A. Calendar of events

Strawman RequirementsJune, 1975

Steelman RequirementsJune, 1978

*IPreliminary Design Competition February, 1918
Selection of "Green" LanguageApril, 1979

Test & Evaluation of DesignNovember, 1979

Compiler Development StartJanuary, 1980

B. Pascal based (Jensen and Wirth 1974)

1. Many features added

a. separation of specification and implementation

b. multitasking

c. machine-dependent coding

SOFTWARE ENGINEERING PRINCIPLES 8-11
14-25 July 1980

SEC. 8 / LANGUAGE CONSIDERATIONS

d. repreRentation specifications

e. generics

etc.

I1. Ad3 Bpsics

A. ,-,rams as collections of Ada modules

B. Module organization

1. Specification

2. Body

8-12 SOFTWARE ENGINEERING PRINCIPLES

14-25 July 1980

L- - _ _ _ _ _ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _ _

Ada / Doc. LANG.2

C. Packages and tasks

I. Package information-hiding module

2. Task process

D. Package specification = information-hiding module interface

package Chm is

-- The specification contains all package entities that the user
-- has access to, including procedures, functions, types,
-- variables, and constants.

function CharEq (Chl, Ch2 : Character) return Boolean;

function CharLt (Chl, Ch2 : Character) return Boolean;

end Chm;

E. Types

1. A type defines value space and operations

a. numeric

Integer, Real builtin

type I is range 0..100;

FieldLength: constant := 30;

SOFTWARE ENGINEERING PRINCIPLES 8-13
14-25 July 1980

____ ___ ___ ___ ___

rSSEC. 8/LANGUAGE CONSIDERATIONS

b. enumeration

Boolean, Character builtin

yeField is (Boc, Cit, Coa, Gn, Gsl, Sop, St, Tit, Zip);

typ MaddsModules is (Ssm, Asm, Apm, 1pm, Opm, 1dm, 0dm,
Chin, Mcm, Ueh);

C. array

type Table is array~l. .10) of int5eger;

typ Address is array(1..NumFields) of string(FieldLength);

type ModuleNames is array(MaddsModules) of string(l. .3)

("SSM" , "ASM", "APM', "1PM"1, "OPH", "1DM", "0DM",

"CIM" , "MCM1," , ")

NumErrors: constant %=23;

type MsgLength is range 1. .61;

tyl Msgs is array~l. .NumErrors) of string(MsgLength);

8-14 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Ada / Doc. LANG.2

d. record

type StatusValue is (Undefined, Defined);

type StatusArray is array(l..NumFields) of StatusValue;

type AddrForm is

record

Status: StatusArray;

Value: array(l..NumFields) of string(FieldLength);

end record;

2. Distinguishing among types

a. textual distinction

type Selector is (Boc, Cit, Zip);

type Field is (Boc, Cit, Zip);

b. Derived types

type Addr is new integer;

F. Variables and constants

MaxAds: constant integer := 100;

Addresses: array(l..MaxAds) of Addr.Form;

SOFTWARE ENGINEERING PRINCTPLES 8-15
14-25 July 1980

I.~ ~~ -- ----------------__ _ _ _

SEC. 8 / LANGUAGE CONSIDERATIONS

G. Procedures and functions

procedure SetBoc(A: Addr; S: string) is

if A not in AddressNumber thci Ueaida("ASM", "BOC");

else

kddresses(A).Status(l) : Defined;

Addresses(A).Value(1) :S;

end i.

end SetBoc;

function GetBoc(A: Addr) return st-ing is

if A not in AddressNui.ber then Ueaida("ASM", "BOC");

else

return Addresres(A) .Value(1);

nd if;

end GetBoc;

8-16 SOFTWARE ENGINEERING PRINCIPLE'
14-25 July 15o

Ada /Doc. LANG.2

H. Example -- the address storage module as an Ada package

package ASM is

-- Specifications for procedures, types, variables, constants,

-- etc. needed by users.

end ASM;

separate package body ASM is

-- Implementation of procedures, types, variables, constants,

-- etc. declared in package specification.

end ASM;

I. Tasks

I. Task specification defines communicatior and synchronization

operations

2. The rendezvous

SOFTWARE ENGINEERING PRINCIPLES
B-17

14-25 July 1980

________________ - - - -

AD-AGS7 997 NAVAL RESEARCH LAB WASHINGTON DC F/G 9/2
SOFTWARE ENG INEERING PRINCIPLES. (U)
JUL So L J CHMURA, P CLEMENTS, C L HEITMETER

UNCLASSIFED N

SOMEEOEhhEE
mENONhEE-

1111 1.5 1 1111. 11111__.5
ii'______11111 I.

MIC ROC OPY RESCO [UION 1[F',l 1 ARI
NA-A

SEC. 8 / LANGUAGE CONSIDERATIONS

3. Specifying entry points

task semaphore is

entry P;

entry V;

end;

task body semaphore is

loop

accept P;

accept V;

end loop;

end;

4. Entry calls and procedure calls

8-18 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Ada / Doc. LAG.2

5. HAS location calculator as an Ada example

task buffer is

entry withdraw(Data: out Item);

entry deposit(Data: in Item);

end buffer;

task LocationCalculator;

task body LocationCalculator is

-- Calculate location from an Omega reading

temp, location: integer;

procedure OmegaCalculation(Reading: in integer) is separate;

loop

-- Obtain Omega reading, calculate location, and

-- deposit location in the location update buffer.

Omobsbuf.withdraw(temp);

location :- OmegaCalcula'Jon(temp);

Locupbuf.deposit(location);

end loop;

end Location-Calculator;

6. Task proliferation

a. one task per buffer monitor, one task per semaphore

SOFTWARE ENGINEERING PRINCIPLES 8-19
14-25 July 1980

SEC. 8 / LANGUAGE CONSIDERATIONS

b. cannot pass tasks as parameters when desired

Ill. Adn and Software Engineering

A. Tnformation-hiding modules

1. Direct correspondence to packages

2. Peepholes into the interface

B Abstract interfaces

1. Can be represented as package

C. Processes

I. Process representable as task

2. Process synchronization based on semaphores, task synchroniza-
tion based on rendezvous

8-20 SO1WAlES EUIEERIIIG PRINCI ES
14-25 July 1980

-- 7 .

Ada / Doc. LJNG.2

D. Undesired events

1. Sufficient freedom to define and access appropriate procedures
and packages when necessary

2. Situations not requiring parameter passing can make use of
exceptions

IV. Ada Evaluation (LANG.l Criteria)

A. Help the designer

1. Moderately surprise free

2. Probably will not allow very efficient translation

3. Information access enforceable

4. May allow ease and efficiency of use of programs by others

SOFTWARE ENGINEERING PRINCIPLES 8-21

14-25 July 1980

SEC. 8 / LANGUAGE CONSIDERATIONS

5. Some assumptions about desired response to runtime errors are
builtin

6. Parallel process implementation is constrained

7. Nonrestrictive loops are provided

8. Facilities for confining assumptions and decisions are provided

9. Facilities for user-defined types and abstract types provided I
moderately well

lI

B. Translator and related support
~???????

8-22 SO AR ENGI EERING flINCIPLIAS

14-25 July 1980

Ada I Doc. LAG. 2 4

V. The Address Storage Module (ASM) as an Ada Package

package ASM is

-- The ASH consists of all address storage and retrieval routines. It

-- hides the representation used to store the addresses. For each

-- routine, the parameter A indicates the address whose field is being

-- stored or retrieved. GetNca returns the number of complete addresses.

use SSM; -- need definition of strings

MaxAds: constant integer : 100; -- maximum allowable addresses

ype Addr is private; -- give users access to type Addr

procedure InitAs;

procedure VerAds;

function GetNca return integer;

function GetBoc(A: Addr) return string;

procedure SetBoc(A: Addr; S: string);

function GetCit(A: Addr) return string;

procedure SetCit(A: Addr; S: string);

function GetCoa(A: Addr) return string;

procedure SetCoa(A: Addr; S: string);

function GetCn(A: Addr) return string;

procedure SetGn(A: Addr; S: string);

function GetGsl(A: Addr) return string;

procedure SetGsl(A: Addr; S: string);

function GetLn(A: Addr) return string;

procedure SetLn(A: Addr; S: string);

function GetSer(A: Addr) return string;

procedure SetSer(A: Addr; S: string);

SOFTWARE ENGINEERING PRINCIPLES
8-23

14-25 July 1980

SEC. 8 / LANGUAG~E CONSIDERATION

function GetSop(A: Addr) return string;

procedure SetSop(A: Addr; S: string);

function GetSt(A: Addr) return string;

procedure SetSt(A: Addr; S: string);

function GetTit(A: Addr) return string;

procedure Setlit(A: Addr; S: string);

function GetZip(A: Addr) return string;

procedure SetZip(A: Addr; S: string);

private
type Addr is new integer;

end ASH;

package body ASH is separate;

restricted(Hain, SSM);

separate package body ASH is

use MS, UER;

typ Selector is (Boc, Cit, Coa, Gn, Gsl, Ln, Ser, Sop, St, Tit, Zip);

-Addresses are expected to have Wl fields either defined or undefined.
-The type StatusArray provides an, easy way to mark fields of an address
-as either defined or undefined.

typ StatusArray is array(Boc .. Zip) of (Undefined, Defined);

The type AddrForm provides the storage representation for addresses.

typ AddrForm in

record
Status: StatusArray;
Value: array(loc .. Zip) of string;

end record;

8-24. SOYNWAU IRGINERRING PRINCIUS
14-25 July 1960

Ada / Doe. LANG.2

-The variables All Undefined and AllDefined provide convenient arrays

-for finding out if addresses are eit~her all defined or all undefined.

AllUndefined: constant StatusArray :- (Boc .. Zip -1 Undefined);

AllDefined: constant StatusArray :- (Boc ..Zip -1 Defined);

typ AddressNumber is range 1 .. HaxAds;

-- Variable Addresses is the array used to store addresses.

Addresses: array(AddressNumber'first .. AddressNumber'last);

Last: integer range 0 .. MaxAds;

procedure InitAs is

Last :=0;
for I in AddressNumber loop

-Addresses(I).Status :- All-Undefined;
end loop;

end InitAs;

procedure VerAds is

Last :- 0;
for I in AddressNumber lo

exit when AddressesM(I.Status AllDefined;

end loop;
for I in Last +1I.. MaxAds loo

if Addresses(I).Status /- All Undefined then
Ueasmi("ASM ","VKRAS"T;

end if;
end loop;

end VerAds;

SOFTWARE ENGINEERING PRINCIPLES 8-25

14-25 July 1980

SEC. 8 / LANGUAGE CONSIDERATIONS

function GetNca return integer is

return Last;

end GetNca;

procedure SetBoc(A: Addr; S: string) is

if A not in AddressNumber then Ueaida('ASH", "BOC");
else

Addresses(A).Status(1) : Defined;
Addresses(A).Value(Boc) : S;

end if

end SetBoc;

function GetBoc(A: Addr) return string is

if A not in AddressNumber then Ueaida("ASM", "BOC");
else return Addresses(A).Value(Boc);

end if;

end GetBoc;

-- Other Set and Get function implementations are similar to SetBoc and

-- GetBoc and are not inclueed

end ASH;

VI. References

Jensen, K.; and Wirth, N. 1974. Pascal User Manual and Report. 2nd ed.

New York: Springer-Verlag.

ACM SIGPLAN. 1979. "Preliminary Ada Reference Manual." SIGPLAN Notices,

vol. 14, no. 6, part A.

8-26 SOFTWARE ENGINERING PRINCIPLES
14-25 July 1980

LM

a'

PROC. 1 Process Structure of Software Systems

LECTURE

I. Imposing Structure on Run-Time Events

A. Examples of run-time events

1. Real-time

read value from angle of attack sensor
calculate new system velocities
output new heading value to display
aircraft becomes airborne
pilot keys in a number

2. Data processing

read new record from tape
extract key

print out a line
disk unit raises interrupt

B. Two ways to view events on a general-purpose computer

1. chaotic unrepeatable sequences

. . . read line typed on terminal by user A
fetch FORTRAN compiler into core for user B
compute value for user C

start compiling for user B
decode line typed by user A

output value computed for i~er C
respond to decoded command'from user A . . .

SOFTWARE ENGINEERING PRINCIPLES 9-1
14-25 July 1980 . ..

7., 71

SEC. 9 / PROCESS STRUCTURE

2. Set of user jobs proceeding independently

A B

. . . read line typed on terminal . fetch Fortran compiler into core
decode line start compiling
respond to decoded command •

C. Two ways to view a real-time system on a dedicated ccmputer

1. First page from A-7 math flow

initialize navigation, if needed

calculate magnetic heading
calculate ground speed and total velocity from inertial north

and east velocities
determine whether aircraft airborne, landbased, or seabased
determine if inertial platform ready and reliable
format horizontal velocity and total velocity for panel
output zero to ground track needle
if ground align just selected, zero panel clock and turn on light
compute true heading

2. Single train of thought

set scale for inertial platform accelerometer pulse p. N-2

read in accelerometer pulses and calculate N and E vel p. WD-2
calculate inertial groundspeed from N and E velocities p. N-i

damp inertial groundspeed with system doppler groundspeed p. N-12

9-2 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Process Structure of Software Systems /Doc. PROC.l

D. Processes as subsets of events occurring in a system

I. In general purpose systems, each subset is a user's job

2. In real-time systems, determining best subsets is a major design
problem

II. Two Aspects of Process Design

A. Deciding on the right subsets (processes), i.e., grouping the events

into processes -- subject of this lecture

-- What are the parts of the structure?

B. How subsets cooperate an-1 communicate -- subject af next lecture

-- What is the relation between partsi

III. Sequential Processes

A. Operational definition: a unit for processor allocation -- i.e., a

unit competing for CPU time

SOFTWARE ENGINEERING PRINCIPLES 9-3
14-25 July 1980

SEC. 9 / PROCESS STRUCTURE

B. Sequencing decisions made here

1. Sometimes order of events matters

Example: read value

smooth value

2. Sometimes order of events does not matter

Example: compute magnetic heading

decide whether aircraft airborne

3. When order matters, events belong in same process

4. Order of events in a process is always unambiguously determined

5. Order of events in diffirent processes not well defined

a. processes executed on one processor: interleaved execution

9-4 SOFTWARE ENGINEERING PRINCIPLES

14-25 July 1980

_ _ _ _ _ _ I W

Process Structure of Software Systems / Doc. PROC.l

b. processes executed on several processors: depends on speed

of processors, allocation strategy, etc.

c. Unpredictability of interrupts

C. Implications of definitions

1. Process executing on 0 or I processor at a time, never more

-- cannot be worked on simultaneously by more than one CPU

2. Two events in same process can never occur simultaneously

-- parallelism restricted

3. Speeds of processes unknown, i.e., time between events within a

process unknown

-- rate of one process affected by other processes

i

SOFTWARE ENGINEERING PRINCIPLES 9-5

14-25 July 1980

i. _ _ _ _ _ _ _ _ _ _
.1---

SEC. 9 /PROCESS STRUCTURE

IV. Advantages of a Well-Designed Process Structure

A. Each process makes sense by itself

B. "What" a process does is separated from "when" it does it

1. "What" is simpler: can be done by less experienced programners

2. "When" determined by scheduler: major timing problems are
isolated

C. Easier to make configuration changes

1. Each process can be written as if it runs on its own machine

2. Scheduler takes care of interleaving them on the available
machines

3. Can add or remaove processors without changing anything but
scheduler

9-6 SOFTWARE ENG INEERING PRINCIPLES
14-25 July 1980

Process Structure of Software Systems /Doc. PROC.1

V. Rules for Designing a Good Process Structure

A. Initially divide system into maxim number of processes

1. Tvo events in the same process if they could never overlap in

t ime

2. Two events in different processes only if they could conceivably
overlap or if the order is irrelevant

B. Decide on right granularity based on tradeoff between cost and
benefit

1. Cost of smallest division
-maintaining process records
-creating and destroying short-lived processes
-communication between processes

2. Benefits of smallest division

-no potential parallelism ruled out
-no potential configuration ruled out
-programs extremely simple. to understand

SOFTWARE ENGINEERING PRINCIPLES9-
14-25 July 1980

SEC. 9 / PROCESS STRUCTURE

C. If granularity too fine, combine strongly related processes into one
process

I. Still easy to understand

2. Arbitrary sequencing -- rules out some parallelism

3. Reduces cost of process switching and communication

D. Separate out extremely time-critical events

Example:

read Angle of attack
filter sensor value and stale value to produce new value

must read before filtering, tut reading may get ahead
-- first step timt-critical, second not
-- allow second step to get behind

VI. Critical 9ueation: What Information Can One Use to Design Process
Structure?

A. Nothing that depends on configuration

9-8 SOIWARE 3NOIUBER ING PRINCIPLES
14-25 July 1980

7Zl.in-

Process Structure of Sot .e Systems /Doc. PROC.I

B. Only information that is unlikely to change

VII. Programs May Be Written As If They Would Control Separate Processes,
Then Be Combined Into One Process By Macro Expansion

A. Retain ease of comprehension

B. Avoid overhead of separate processes

VIII. Examples of Poor Process Structure

A. Time cycle organization -- events organized by how often they must
occur

I. extremely sensitive to smell cbianges

2. h2 -1 to follow

SOTARE ENCIN.RING PRINCIPLES 9-9
14-25 July 1980

SEC. 9 / PROCESS STRUCTURE

B. Processes with internal scheduling

-- Sign of design error if every time a process runs it must spend
several instructions figuring out what to do next

IX. Example of Process Definition From Good Process Structure

program controlMagheadingdisplay;

comment this process executes periodically. The desk clerk process signals
the event "update time" whenever it is time for this process to run;

event updatetime occurs freq times per second
while true do

wait(update_time); comment process suspended until it
receives signal to run;

it magnetic heading sensor turned off
then output 0
else bein

read value from magnetic heading sensor;
calculate magnetic heeding from sensor reading;
output magnetic heading ;
end;

end-if;
end;
end-while;
end;

X. Reminder: A System Has Many Structures Which Do Not Have To Coincide
With Each Other

A. Module structure (early design-time)

9-10 SOFTWIA3 EMNINIfING PRINCIPLES
14-25 July 1980

Process Structure of Software Systems / Doc. PROC.1

B. Uses structure (late design-time)

C. Process structure (run-time)

XI. Reference

Dijkstra, E. W. 1968. "Co-operating Sequential Processes." Programing
Languages, ed. F. Genuys, New York: Academic Press, pp. 43-112.

Dijkstra, E. W. 1968. "The Structure of the THE Multiprogramming
System." Comm. ACM, vol. 11, no. 5, pp. 341-346.

SOMAE ENGINEERING PRINCIPLES 9-11

14-25 July 1980

PROC.2 MP Process Structure

EXERCISE

Name:

The original and alternative MP systems have different process
structures. In the original MP structure, most modules are also processes.
Most MP modules described in MP.3 are the units of processor allocation, and
the executive module is the scheduler. In the new MP structure, the modules
only provide operations that are excuted by the processes at run-time; the
modules themselves are not the units of processor allocation.

Pages 9-15 and 9-16 of this exercise illustrate the difference between the
two process structures. Listed on page 9-15 are the events occurring in the
message analysis module of the original MP structure. These events were taken
from MP.2 and MP.3. Listed on page 9-16 are the events occurring in the
incoming message process and outgoing message process in the new MP structure.

Evaluate the two different MP process structures, based on the
considerations outlined in lecture PROC.1. In particular, consider the
questions below. Be sure to give reasons or examples to support your opinions.

1. Which structure will have more inter-process communication overhead?

F~1E~g~GPAGE BLANL.ZW0 F1LSA6ED

SOFTWARE ENGINEERING PRINCIPLES 9-13

14-25 July 1980

L Z -. _ _ .., -.. - -,,-
' ' ; -

SEC. 9 / PROCESS STRUCTURE

2. Which structure could take better advantage of a multiprocessor
configuration with shared memory?

3. Which structure causes processes to spend more time figuring out what to
do next?

9-14 SOPTMARE ENGINEERING PRINCIPLES
14-25 July 1980

MP Process Structure / Doc. PROC.2

PROCESS FROM THE ORIGINAL MP PROCESS STRUCTURE

In the original MP structure described in MP.2 and MP.3, there is one
process for each module. Thus there is a process to analyze messages (MA),
another to screen messages (SC), another to assemble a message to be
transmitted (CO), etc. To illustrate these processes, we list below the
events occurring in the message analysis module.

Review the common characteristics of MP modules in document MP.2, page 1.
There are interrupts, but the RUNNING module is always resumed as soon as the
interrupt housekeeping is completed. Since the message analysis module
requires long processing time, it releases control of the processor after
analyzing every six lines of the message, in order to allow other modules to

proceed. When it does this, it sends itself a WCB to tell itself where to
pick up. Whenever a process releases control of the processor, the executive
must determine which process runs next.

Step Message Analysis Module

1 get next WCB out of message analysis WCB queue
2 analyze WCB to determine a) which message to work on, and b) what to do

next (whether to branch to Step 3, 5, 7, or 9)
3 for lines I through 6, analyze line, subtracting points for errors and

correcting errors where possible
4 queue WCB to self and give up processor
5 for lines 7 through 12, analyze line, subtacting points for errors and

correcting errors where possible
6 queue WCB to self and give up processor
7 for lines 13 through 16, analyze line, subtracting points for errors and

correcting errors where possible
8 queue WCB to self and give up processor

9 if remaining points It 80% of total points then message failed

10 prepare MDB for message

11 queue WCB to DC to store MDB
12 queue WCB to LM module to log message status

13 if message failed then a) queue WCB to DC to remove failed message from
storage, and b) terminate process

14 queue WCB to DC to store message on disk

15 if incoming message then queue WCB to SC module, notifying it message is
ready to be screened

16 if outgoing message and channel available queue WCB to TO module,

notifying it message is ready to be transmitted

17 wait until WCB queue not empty; then start over with step I

SOFTWARE ENGINEERING PRINCIPLES 9-15
14-25 July 1980

SEC. 9 /PROCESS STRUCTURE

PROCESSES FROM THE NEW MP PROCESS STRUCTURE

Ifrnth mones, and diffetretressoes mayes all ueac prgamtifrmsthe sae
iseng thedo ew HP stutre thr sisoe process for ueac prgasive mesaenha

difeben wokesoa a imfereAsig process mayl use programs from mh am
module. The following informal descriptions of two of these processes show
the sequence of operations and the programs they use from the MP.4 modules.

Note that these processes can be suspended during any step, either because
they request unavailable resources or because a hardware interrupt such as a
clock interrupt occurs. Unlike the original HP structure, an interrupted
process may not necessarily resume immediately after the interrupt housekeeping
is completed. The scheduler may choose to start another process instead.

Since the programs provided by the modules are reentrant, they can be used
by more than one process simultaneously.

INCOMING MESSAGE PROCESS

Step Using programs in:

1 Input a string Communications
& Equipment Control

2 Analyze string, storing it in the message holder External Interface
& Message Holder

3 Register message in log Information
Retrieval/Log

4 Check message against the watch list Screening Module&
Message Holder

5 IF any addressees in the message are in watch list, Terminal Control
notify operator on terminal

ELSE delete message from storage Paging Module

6 TERMINATE

OUTGOING MESSAGE PROCESSES

Step Using programs in:

1 Help the operator create a message, storing the Text Editor &
data he types in the message holder Message Holder

2 Register message in log Information
Retrieval/Log

3 Transform message into the AUTONOYS format External Interface
getting data for fields from message holder & Message Holder

4 Transmit the message Communications
IEquipment Control

5 TERMINATE

There might be other processes to retrieve and display messages, edit old
messages, etc.

9-16 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

JI
PROC.3 MP Process Structure

EXERCISE SOLUTION

1. Which structure will have more inter-process communication overhead?

The original MP structure (MP.2)

The original structure uses control block queuing and scheduling to switch
between the activities associated with a single message, where the new
structure uses subroutine calls. Control block queuing is considerably more
time-consuming than parameter passing. The inter-process overhead must be
paid in the original structure even if only one message is processed at a time.

2. Which structure could take better advantage of a multiprocessor

con figurat ion?

The new MP structure (MP.4)

Consider a multiprocessor configuration, with several processes 'n the
middle of mnessage analysis and no other work to be done. In the original
structure, only one processor would be used because there is only one MA
process; the other messages would have to wait, and the other processor would
be idle. Use of a single MA process introduces an artificial bottleneck into
the system. With the new structure, each processor could be busy analyzing a
different message, sharing the reentrant programs in the External Interface
and Message Holder modules.

3. Which structure causes processes to spend more time figuring out what to
do next?

The original MP structure (MP.2)

When a process in the original structure resumes running, it must analyze
a Work Control Block (WCB) to determine what to do next. The deci.ion can be
arbitrarily complex: which message to work on, which step to do next, whether
the message is in core, etc. In contrast, a process in the new NP structure
cart continue as if it had not been interrupted. What to do next is determix'ed
by the next instruction in the process.

Note that the same work must be done in both structures to cause a process
to resume running: the registers must be restored and the processor instruc-
tion counter must be loaded with the address of the next instruction in the
process.

SOFTWARE ENGINEERING PRINCIPLES 9-17
14-25 July 1980

PROC. Process Synchronization

LECTURE

1. Introduction

A. System of cooperating sequential processes

B. Not totally independent

1. Different processes use same resources

Example: line printer

2. Production and use of information may be in different processes

Example: One process polls sensor and puts data in a buffer
Another process uses this data to control output device

3. Detection and response to an event may bc in different processes

Example: One process detects the event target designation
Four other processes respond:

two displays turned on
ballistics calculations started
radar sampling started

ERVAUNG PAGE BLANK-NiOT F14"~L

SOFTWARE ENGINEERING PRINCIPLES 9-19

14-25 July 1980

SEC. 9 / PROCESS STRUCTURE

II. Three Classes of Synchronization Problems

A. Mutual exclusion problem

1. Examplez airline reservation system

localo:c nums =ats;

if local I It totalseats local2:- numseats;

then numseats:= local 1 + 1;
else refuse reservation

end-if;

if local_2 it total seats

then numseats: = local_2 + 1;
else refuse reservation

end-if;

2. Character of solution: explicitly prevent improper interleaving

Correct Interleaving Incorrect Interleaving

A X A A X X
B Y X X A A
X A B Y Y B
Y B Y B B Y

B. Reader-writer problem

I. Example: Interactive data base
Readers do not interfere with each other
Writers must have exclusive access

9-20 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Process Synchronization / Doc. PROC.4

2. Character of solution: less restrictive than mutual exclusion

C. Signalling problem

I. Example: the event "target designation"

wait (@T(!Desigl)) detect target designation
proceed signal (@T(IDesigl))

proceed

2. Character of solution: all processes that execute "wait" are
suspended until another process executes "signal"

III. The Need for Special Synchronization Operators

A. Synchronization problems difficult to solve -- prone to subtle errors

B. Goal: to solve synchronization problems in a general way, rather
than allow each programmer to solve them his own ad-hoc way

SOFTWARE ENGINEERING PRINCIPLES 9-21
14-25 July 1980

I i I

SEC. 9 / PROCESS STRUCTURE

A: C. Uses hierarchy

Process definitions

Synchronization operators

Hardware synchronization features

1. Machine-dependent operations used for synchronization (e.g.,
disabling interrupts) -- confined to tne implementation of
synchronization routines

2. Synchronization routines: crucial code. Very carefully
programmed and tested -- must be correct sni fast

D. Choice of right synchronization operations: design problem

9-22 SOFTWARE CNGINERING PRINCIPLES
14-25 July 1980

Process Synchronization /Doc. PROC.4

IV. The Rules of the Game

A. No assumptions about the relative speeds of processes

1. Cannot solve synchronization problems by assuming

"This takes longer than that"

2. Train analogy: why we need explicit synchronization

B. Minimize interrupt-disabled time

C. Avoid "busy form of waiting" -- waste of CPU and memory cycles

label: if (busy - true) then go to label; end if;

busy := true;

busy :- false;

I

SOFTWARE ENGINEERING PRINCIPLES 9-23

14-25 July 1980

SEC. 9 / PROCESS STRUCTURE

V. Synchronization Operators Change the Set of Processes Eligible for
Scheduling

A. Process states:

Running -- currently allocated the processor

Ready -- eligible for scheduling

Waiting -- not eligible for scheduling

B. Synchronization operator may cause a process to change state

VI. Excample: Classic Semaphore Variables, with F and V Operations -

Dijkstra

A. Semaphore variable

1. Only accessed by P and V operations

2. Usually implemented as a counter and a list of waiting processes

B. ?(semaphore) -- "try" in Duatch

I. Process asks for permission to proceed

9-24 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1960

II

Process Synchronization / Doc. PROC.4

2. P-operation may affect state of process that calls itt change

staLe from "running" to "waiting"

3. When process resumes, there is no record of interruption

4. Example implementation for P(semaphore)

begin
semaphore.ctr:= semaphore. ctr - 1;

if semaphore.ctr It 0 then

process status changed to "waiting";
process put in the waiting list for the semaphore;
end;

end-if;
end;

C. V(semaphore) -- "increase" in Dutch:

1. Running process may change state of another process from
"waiting" to "ready'

2. Example implement3tion for V(semaphore)

begin
semaphore.ctr:= semaphore.ctr + 1;
if semaphore.ctr le 0 then

one process removed from waiting list;

status of that process changed to ready;
end;

end-if;
end;

SOFTWARE ENGINEERING PRINCIPLES 9-25

14-25 July 1980

-J--

SEC. 9 /PROCESS STRUCTURE

VII. Solving Synchronization Problems with P and V

A. Mutual exclusion problem (initial value of utex.ctr 1)

g(lobal semaphore mutex; global semaphore mutex;
P mutex)

iflocal 1 It sal;seats then

numseats:-local_1+1; end-if;
V(mutex);

end;_
local_2:- numseats;
if localT2 It total-seats then
numseate.inlocal_2+1; end-if;
V(mutex);

end;

B. Signalling events (initial value of desig.ctr - 0)

beginbgi
global semaphore desig; global semaphore desig;
P(desig);

detect target designation;
V(desi,

start radar sampling.;
end ; end;

VIII. Coordinating Access to Resources Using P and V

A. Monitors

1. Set of functions assuring resources accessed correctly,
according to a particular set of rules

9-26 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Process Synchronization / Doc. PROC.4

2. Resource can only be accessed through monitor functions

B. Uses hierarchy

Process definitions

Resource monitors

Resource access Synchronization

functions operators

C. Monitor for a transmitter (see HAS.4, p. 14-60)

1. Uses hierarchy

Resource monitor: obtainxmitr(freq)

releasexmitr

I I
Resource access function: Synchronization: P, V

tune transmitter to freq

2. Rules: to avoid interleaved transmission, mutually exclusive

access to a particular transmitter

SOFTWARE ENGINEERING PRINCIPLES 9-27

14-25 July 1980

4- -____

SEC. 9 /PROCESS STRUCTURE

3. Monitor: only program that knows how many transmitters

4. Processes: written as if each has own transmitter

D. Example: Monitor controlling access to a buffer

1. Initial condition -- buffer empty

counter of semaphore "data" 0 (no data available)

counter of semaphore "space" =size-of-buffer
(all spaces in buffer available)

2. No other access to buffer allowed

3. Rules implemented by monitor

-- Only one deposit at a time on a particular buffer

-- Only one accept at a time on a particular buffer

-- accept and deposit may occur simultaneously, so long as they
are not operating on same buffer slot

-- deposit: process must wait if buffer full

-- accept: process must wait if buffer empty

9-28 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Process Synchronization / Doc. PROC.4

4. Deposit: function that puts an item in the buffer
waits -- if another process putting an item in the

buffer
waits -- if buffer full

P(in);

P(space);

put item in buffer; comment call buffer access fcn;

V(data);

V(in);

end;

5. Accept: function that takes an item out of a buffer
waits -- if another process taking an item out of the

buffer
waits -- if buffer empty

P(out);

P(data);

take item out of buffer; comment call buffer access fcn;

V(space);

V(out);

end.,

SOFTWARE ENGINEERING PRINCIPLES 9-29
14-25 July 1980

_____ __.....___ _ __ _ _ . . . _7, :.

SEC. 9 / PROCESS STRUCTURE

VIII. References

Courtois, P. J.; et al. "Concurrent Control with 'Readers' and

'Writers."' Comm. ACM, vol. 14, no. 10, pp. 667-668.

Habermann, A. N. 1972. "Synchronization of Conmunicating Processes."

Comm. ACM, vol. 15,- no. 3, pp. 171-176.

Cooprider, L. W.; et al. 1974 "Information Streams Sharing a Finite
Buffer: Other Solutions." Information Processing Letters, vol. 3,

no. 1, pp. 16-21.

Shaw, A. C. 1974. The Logical Design of Operating Systems, Chap. 3.
Englewood Cliffs: Prentice Hall.

Parnas, D. L. 1975. "On the Solution to the Cigarette Smoker's Problem
(Without Conditional Statements)." Comm. ACM, vol. 18, no. 3,
pp. 181-183.

9-30 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

a
C
2
2
ina
-4

* 4- 3'

.4

CORR. 1 Introduction to Proofs of Correctness

LECTURE

I. Motivation -- Why Should "Practical People" be Interested in
Verification?

A. Often regarded as a toy -- successful only with toy programs

B. State-of-the-art in program writing/testing

C. Cost of incorrect programs

D. Sogtware engineering is in eariy stages of its development;

verification likewise

E. IL is important :o uadexstand the principles in order to be able to

follow advances

SOFTWARE ENGTNEERING PRINCIPLES 10-1

14-25 July 1980

igige

SEC. 10 /PROOFS OF CORRECTNESS

F. Can be applied now in limited cases

G. An-i alternative analysis of a program is valuable if "correctness"1

is important

IT. Understanding the Word "Correct"

A. One can only verify that programs possess certain formally stated
properties

B. Only actual use can verify that those properties correspond to
"#correctness"

III. What Constitutes an Acceptable Proof of Correctness?

A. Every producer of programs presents a program with an "explanation"
that is intended to demonstrate its correctness. The explanation is
often convincing even when the program is not correct

B. The property of the program being demonstrated must be precisely

stated before the proof and not "refined" during the proof

10-2 SOFTWARE ENGINEERING PRINCIPLES

1-2 Jul _ _ _9 __0

[Introduction to Proofs of Correctness IDoe. CORR.1

C. A clear statement of the "rules of deduction" ("proof rules") must
be provided

D. Each step should be a clearly correct application of one of those
rules using previously verified properties

E. Complexity and Greek letters don't help

F. The proof reader should have to deal with one thing at a time

G. The proof reader should never have to "recall"' or be reminded of
sequences of events

H. At any given step only a small number of details should be relevant-
to following the proof

SOFTWARE ENGINEERING PRINCIPLES 10-3
14-25 July 1980

SEC. 10 / PROOFS OF CORRECTNESS

I. It is advantageous if the proof of a program is done by translating
the quescion of correctness of the program to a mathematical theorem

IV. How Formal Should the Proof Be?

A. What do we mean by formal? -- not the same as logical or precise

B. Fully formal proofs are mechanically checkable

C. Such proofs are suited only to reading by machines

D. Informal does not necessarily mean less valid or less complete

V. Making Statements About Programs by Means of Predicates

A. Predicates make statements about the state at a given point

10-4 SOFTWARE ENGINEERING PRINCIPLUS
14-25 July 1980

7-I

Introduction to Proofs of Correctness / Doc. CORR.1

B. "Assertions" are statements that given predicates are true at given

points

Example: integer x, y, z;

if y gt 0 and z gt 1

theben gin
y:= y + z;
x:- 3y + 7;

end;

end-if;

4

VI. Proof by the Floyd-Hoare Method

A. Deriving "after" predicates (post conditions) from "before"

predicates (pre conditions)

Example: integer x, y, z;

y:= x;

y:= y + z;

B. The meaning of assignment

SOFTWARE ENGINEERING PRINCIPLES 10-5
14-25 July 1980

SEC. 10 / PROOFS OF CORRECTNESS

C. A profound reversal -- letting the predicate transformation rules
define the language

D. Reducing the proof to a mathematical theorem

E. Using abstraction in proofs

F. Major problems

1. combinatorial explosion

integer x, y, z;

if y It 0

then x:- x + 1;

else x:= x + 2;

end-if;

2. loops -- inductive assertions

10-6 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Introduction to Proofs of Correctness / Doc. COUR-l

3. termination -- partial correctness vs. total correctness

4. proof rules for non-trivial languages

5. dealing vith time dependence and cooperating sequential processes

VII. When Can One Require a Proof and What Should One Demand?

A. Small critical programs

B. Highly advanced contractors (no blood from stones)

VIII. Applying our "Proof" Criteria to Less Formal and Less Complete
Explanations

A. State requirements before shoving that the program fulfills them

SOFTWARE ENGINEERING PRINCIPLES 10-7
14-25 July 1980

SEC. 10 / PROOFS OF CORRECTNESS

B. State the effects of each subprogram and statement type "abstractly"

C. Each step in the explanation should be a clear application of the
statements provided under III

D. Programs with complex or unpredictable sequencing rules should be
explained by means of invariants

E. Explanntions of a program should never refer to internals of another
program

IX. Concluding Remarks

A. Many useful mathematicians use theorems rather than proving new
ones. Programmers should do the same

B. Applicability of the concepts

10-8 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

IC

Introduction to Proofs of Correctness /Doc. CORR.1

C. Understanding the motivation for recent developments in and

attitudes about programming languages

X. References

Floyd, R. W. 1967. "Assigning Meanings to Programs." Proceed. Am. Math.
Soc. Symposia in Applied Mathematics, vol. 19, pp. 19-32.

Hoare, C. A. R. 1976. "An Axiomatic Basis for Computer Programming."

Comm. ACM, vol. 12, no. 10, pp. 576-583.

Dijkstra, E. W. 1976. A Discipline of Programming. Englewood Cliffs:
Prentice-Hall.

Gerhart, S.; and Yelowitz, L. 1976. "Observation of Fallibility in

Applications of Modern Programming Methodologies." IEEE Trans. on
Software Engineering, vol. SE-2, no. 3, pp. 195-207.

Parnas, D. L.; et al. 1976. Using Predicate Transformers to Verify the

Effects of "Real" Programs. University of North Carolina Report no.
TR-76-101.

Mills, H. D. 1975. "How to Write Correct Programs and Know It." Proceed.

1975 Conf. on Reliable Software, IEEE Cat. no. 75CH0940-7CSR.
pp. 363-370.

Gries, D. 1976. "An Illustration of Current Ideas on the Derivation of
Correctness Proofs and correct Programs." IEEE Trans. on Software

Engineering, vol. SE-2, no. 4, pp. 238-244; correction (May 1977)p. 262.

SOFTWARE ENGINEERING PRINCIPLES 10-9
14-25 July 1980

I

II
$

4%

DOC. 1 Documentation Guidelines

LECT1RE

PART 1: GENERAL REMARKS

I. Why Documentation is so Important

A. Uses during development

1. Communication among designers, users, programmers, etc.

2. Training -- makes personnel turnover less disruptive

3. Prevents duplication of effort -- Jf reasons for design

decisions recorded, reduces need to rethink them later

4. Basis for design ,rviews

5. Quality assurance -- standard against which software can be

judged

SOFTWARE ENGINEERING PRINCIPLES 11-
14-25 July 1980

i,:f

SEC. 11 / DOCUMENTATION

B. Uses during maintenance

1. Training

2. Reduces labor of evaluating feasibility of changes

3. Guides programmers as they find and correct errors

4. Repository of design information, which even the original
programmers often forget

5. Preservation of program conceptual integrity -- maintenance
programmers have a way to check consistency of proposed change

11. Co on Problems with Documentation -- Why is it Hard to Use?

A. Difficult to understand -- assumes realier knows more than he does

B. Difficult to find answers to specific questions

11-2
SOFTWARE ENGINEERING PRINCIPLES,

14-25
July

1980,

Documentation Guidelines /Doc. DOC.I

C. Difficult to maintain -- gets out-of-date all too soon

D. Wordy, repetitive, and boring

E. Confusing, inconsistent terminology

III. Remedy

A. View documentation as the important product of design, not as a
by-product of coding

B. Design the documentation -- objectives, contents, organization,
format

1. To be a convenient format for designers to record and exchange
ideas

2. To serve as ready reference tools

3. To be maintained -- controlled and kept up-to-date

SOFTWARE ENGINEERING PRINCIPLES 11-3

14-25 July 1980

- ---- ----- ,-I~-.--- - |

SEC. 11I DOCUMENTATION

4. To explain reasons for decisions since reasons cannot be
inferred from code

C. Genieral principles for documentation design

1. Determine objectives

- Who will need it?

- What should they already know?

- What should they be able to find out?

- trate questions before trying to answer them

3. Separate concerns

4. Documentation should consist of mutually supportive formal and
informal parts

- Informal -- easy for anyone to understand; useful for
reviewers who are not programmers

- Formal -- precise, concise, unambiguous

11-4 SOFTWARE ENGINEERING PRINCIPLZS
14-2' Tuly 1980

., -. . .. _. , , _ . .-

Documentation Guidelines / Doc. DOC.1

5. Involve maintainers early -- to find out what they need

D. Documentation design techniques

I. List questions 1o be answered

2. Organize questions into sections according to who needs Lu know
answers, ior what purpose

3. Design forms to be filled out

4. Plan to revise forms several times as documentation is written

5. Design tables, notation, templates

- Use Eaglish only for overviews, narratives, and explanations

- Use abstract Programs (otherwise known as PDL or coding
specifications) for documenting algorithms

6. Define terms precisely; provide glossary

SOFTWARE ENGINEERING PRINCIPLES 11-5
14-25 July 1.980

SEC. 11 /DOCUMENTATION

E. Design documentation reviews and configuration control procedures

1. Design reviews: What questions should reviewers ask themselves
to determine if document meets its objectives?

2. Configuration control procedures

- How are changes reported?

- Who decides whether to make them?

- Who reviews them?

- How are updates distributed? To whom?

- What tools are needed? -- Word processing support invaluable

IV. Three Types of Documentation

A. Software requirements specification (e.g., Program Performance
Specification)

1. Product of overall system design -- represents agreement among

- User representatives

- Builders of interfacing equipment or software

- Software builders

11-6 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Documentation Guidelines / Doc. DOC.1

2. Questions answered

- What role does the software play in the whole system?

- What constraints are placed on the software?

3. Reference document for software designer and programmers, i.e.,

overall problem statement

4. Guidebook for maintenance programmers

- Constraints on future improvements

- Conceptual integrity of software

B. Overall design document (e.g., Program Design Specification)

1. Agreement between designer and programmers about system structure

2. Questions answered

How is the software divided into modules?

How do the modules work together to meet the overall
requirements?

Specifications for the module interfaces

Overall system tradeoffs

SOFTWARE ENGINEERING PRINCIPLES 11-7
14-25 July 1980

SEC. 11 / DOCUMENTATION

3. Reference document for programmers, i.e., their individual
problem statements

4. Guidebook for maintenance programmers -- where to make changes

C. Detailed design document (e.g., Program Description Document)

1. Program-by-program description

2. Questions answered

What algorithms and data structures were selected? Why?

What program implementation tradeoffs were made?

3. First product from programmers, i.e., the algorithms they choose
and why

4. Guidebook for maintenance programmers -- how to make changes

5. Appropriate place for Abstract Programs or PDL

11-8 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Documentation Guidelines IDoc. DOC-l

PART 2: AN EXAMPLE OF CAREFUL REQUIREMENTS SPECIFICATION

I. Background: A-7 Project

A. Purposes

1. To evaluate usefulness of modern software technology for
real-time systems vith tight constraints

2. To provide an engineering model

B. Basis: Existing flight software for Navy's A-7 aircraft

C. First step: document requirements of existing system

1. Implementation-independent description of current system

2. Problem statement for NRL A-7 project

SOFTWARE ENGINEERING PRINCIPLES 11-9
14-25 July 1980

SEC. 11 / DOCUMENTATION

II. Documentation objectives

A. Specify external behavior only

1. Everything one needs to know to design and program the software

- If less, software may not fill purpose in larger system

- If more, software personnel constrained unnecessarily -- may
not be able to use best approach

B. Specify constraints on implementation

- e.g., timing, accuracy, algorithms, and response time, etc.

C. Be easy to change

D. Serve as a reference tool for experienced designers and maintainers

E. Speci-- expected changes to software

F. Specify desired responses to undesired events

11-10 SOFTWAR] I.NGINEKRING PRINCIPLES
14-25 July 1980

/ .--.- ----------- .-- ___ i j

Documentation Guidelines /Doc. DOC.1

111. Does NOT Contain Programs, Data Structures, Flowcharts

IV. Table of Contents

CHAPTER 0 INTRODUCTION (DEFINITIONS, CONVENTIONS)

CHAPTER 1 COMPUTER CHARACTERISTICS

CHAPTER 2 HARD WARE INTERFACES

CHAPTER 3 SOFTWARE FUNCTIONS

CHAPTER 4 TIMING CONSTRAINTS

CHAPTER 5 ACCURACY CONSTRAINTS

CHAPTER 6 RESF11169 TO UNDESIRED EVENTS

CHAPTER 7 SUBSETS

CHAPTER 8 TYPES OF CHANGES

CHAPTER 9 GLOSSARY

CHAPTER 10 SOURCES OF INFORMATIONq

INDICES

V. Hardware Interface Documientat ion

A. Organize by data i!ulE

B. Design standard forms

SOFTWARE ENGINEERING PRINCIPLES1-i
14-25 July 1980

SEC. 11 D DOCUMENTATION

C. Describe inputs as resources -- no mention of how used

D. Describe outputs in terms of effects on hardware -- no mention of
purpose

E. Formal notation for data items

1. Bracketed names

inputs: /RADALT/, /IMSMODE/

outputs: / ISTERROR//, //HUDSCUE//
values: on, Off

2. Expressions

comparison /RADALT/ lseq 3000 ft
change value //HUDSCUE// : Off

11-12 SOFTWARE ENGINEERING PRINCIPLES

14-25 July 1980

Documentation Guidelines / Doc. DOC.l

F. Example of hardware interface description

Input Data Item: IMS Mode Switch

Acronym: /IMSMODE/

Hardware: Inertial Measurement Set

Description: /IMSMODE/ indicates the position of a six-position rotary switch
on the IMS control panel.

Characteristics of Values
Value Encoding: $Offnone$ (00000)

$Gndal$ (10000)
$Norm$ (01000)
$Iner$ (00100)
$Grid$ (00010)
$Magsl$ (00001)

Instruction Sequence: READ 24 (Channel 0)

Data Representation: Bits 3-7

Comments: /IMSMODE/ = $Offnone$ when the switch is between two positions.

VI. Software Function Interface

A. Organize by function

B. Distinguish periodic and demand functions

1. Periodic functions: occur at regular time intervals

SOFTWARE ENGINEERING PRINCIPLES 11-13
14-25 July 1980

SEC. 11/ DOCUMENTATION

2. Demand functions: occur in response to specific events

C. Output values based on conditions, events, and modes

1. Conditions as predicates

2. Events as changes in condition values

3. Modes as classes of system states

D. Notation

I. Text macros: IGround range to target!

2. Conditions: /IMSMODE/m$Gndal$

3. Events: @T(/IMSMODE/=$Gndal$)
@F(IGround range to target! 30 nmi)

4. Modes *DIG*

11-14 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

.

Documentation Guidelines / Doc. DOC.

E. Example of a special table

Condition Table: Magnetic heading (//MAGHDGH//) output values

MODES CONDITIONS

DIG, *DI*, *I* Always X

Kag sl,*Grid*

IMS fail (NOT /IMSMODE/=$Offnone$) /IMSMODE/"$Offnone$

//MAGHDGH// angle defined by 0 (North)
value /MAGHCOS/ and /MAGHSIN/

i

SOFTWARE ENGINEERING PRINCIPLES 11-15

14-25 July 1980

* - ______ - - -- -- ~- - -~- f

SEC. 11 / DOCUMENTATION

F. Example of function description

Periodic tunction name: Update Flight Path Marker coordinates

Modes in which function required:

DIG, *DI*, *I*, *Mag SI*, *Grid*, *IMS fail*

Output Data Items: //FPMAZ//, //FPMEL//

Initiation and Termination Events:
Start: @T(//HUDVEL// = On)
Stop: @T(//HUDVEL// = Off)

The flight path marker shows the direction of the aircraft velocity vector.
The azimuth displacement from HUD center shows the lateral velocity component
and elevation displacement shows vertical velocity component.

If the components are calculated from ISystem velocities!,
1System relocities! are first resolved into forward, lateral and vertical
components, that is, components along the aircraft Y, X, and Z axes.
From these, the HUD coordinates are calculated in the following manner:

//FPML/2." shows Lateral velocity //FPMEL// shows Vertical velocity
Forward velocity Forward velocity

Condition Table: Coordinates of the Flight Path Marker

MODES CONDITIONS

DIG, *DI* X Always X

I /ACAIRB/ = No /ACAIRB/-= Yes X

!ADC Up! IADC Down!
Mag sl, *Grid* /ACAIRB/=No AND /ACAIRB/=Yes AND /ACAIRB/=Yes

IMS fail /ACAIRB/=No X IACAIRB/-Yes

FPM COORDINATES I/FPMAZ/I:in based on ISystem //FPMAZ//:- 0
//FPMEL//: 0 velocities!l //FPMEL//:-/AOA/

11-16 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Docume:,tation Guidelines / Doc. DOC.l

VII. References

Heninger, K. L.; et al. 1978. Software Requirements for the A-7E
Aircraft. Naval Research Laboratory Memorandum Report no. 3876. See
readers' guide in preface.

Heninger, K. L.-1980. "Specifying Software Requirements for Complex
Systems: New Techniques and their Application." Trans. on Software
Engineering, vol. SE-6, no. 1, pp. 2-13.

MIL-STD-1679. 1978. Weapon System Software Development.

SOFTWARE ENGINEERING PRINCIPLES 11-17
14-25 July 1980

I
I

.3
2
0
0

-4-

i

MP. 1 The UGH Message Processing (MP) System

EXAMPLE DESCRIPTION

Fapsan Rat
Cognizant Engineer
UGH Cotporation

Introduction

The UGH Message Processing System (MP) may use a variety of UGH computers
from the large 2PIE to the small UGH-20 to provide an integrated support
system for any organization requiring rapid and widespread distribution of
messages to organizational units in geographically distributed locations. The
UGH MP is designed to assist in every stage of message distribution beginning
with the input of the draft message into the system, including automatic
control of the communications equipment, the production of periodic reports
about the status of the system and the messages that it has p ocessed, and
including (optional) an interactive information retrieval facility to allow
managers to check on the status of the system or any message that has been
submitted to it in the recent past. The UGH MP is highly modularly structured
and can be tailored to meet the needs of any organization. As a result, its
adaptability to changing needs is assured.

Interfaces and Functions

The UGH MP is designed to interface with and utilize the services of the
world-wide AUTONOYS communications network. This network includes direct RF
ship-to-shore communications, satellite relayed communications, and high
capacity overland channels and is continually being expanded to include the
most mode-n communications techniques. AUTONOYS is an existing communications
network which has evolved over the years, starting from a fully manual system
using ver- ,toisy (error-prone) communications channels, but has been adapted

to take advantage of computer control as well as improved communications
equipment. Because some of the low-traffic nodes on the AUTONOYS network are
still manually controlled and some of the channels are still quite unreliable,
all changes to the original AUTONOYS communications conventions have been made

upwards compatible. This has resulted in a rather complex communications
protocol. The MP is designed to produce messages in any of the AUTONOYS

formats and is designed to be adaptable to the new formats which are expected
to be introduced as AUTONOYS is improved.

It is expected that the organizations which UGH MP will serve will
each have their own internal message conventions and guidelines. The MP
adjustable user interface is designed to assist an operator with converting

internal messages to external messages. MP can even assist with internal

SOFTWARE ENGINEERING PRINCIPLES 12-1

14-25 July 1980

SEC. 12)iSAGE PROCESSING (MP) SYSTEM

message i, ,ntog by producing the copies of outgoing messages to be sent to
various ' . se" addressees for information and retention. MP will
automati(. put addresses on these copies.

A silk feature of MP is its ability to interface with UGHTRANSR

computer-., oiled communications equipment. This highly sophisticated
equipment esigned to eliminate the need for a radio operator except for
routine jnf iance and emergency repairs. The "normal" functions of the
operator is antenna selection, tuning, connecting transmitter to
antennat:, , are all performed by electronically controlled switches and
servomecrtirns programmable in UGH hardware. The UGH MP software includes an
option tio v-'t examine the "routing indicators" and select the appropriate
communica" , : setup.

An ad.;')nal feature of MP is its ability to adjust to the security and

privacy :ietoo of its users and its ability to make use of the special AUTONOYS
message s ity conventions. AUTONOYS offers a variety of communications
channels rariung from "broadcast" (which is easily intercepted) to highly
secure nar-ow beam communications. AUTONOYS communications conventions
in-luL- rg; redundant security codes designed to minimize the probability
of a sens / message being transmitted over an inappropriate channel. MP
provides r -: ecessary software and formatting to take advantage of these
feat,,r'. - -Igo checks all input carefully to make sure that the security
classifJc.L.:-. are legitimate and consistent.

When n connection with the broadcast channels of AUTONOYS, MP
wil' -'eceive many messages that are not intended for its user organizations.
MP can "screen" these messages and select only those which its users are
interested To prevent lost messages caused by incorrect screening, typing
errors, or transmission errors, MP will (if requested) produce a list of
rejected mer- ges for operator review.

One of the special features of MP in this regard is its dynamic watch

list. Every -1-ming message has a list of addressees. To screen these
incoming messages, MP uses a list of "addressees of interest" or a "watch

list." The me qage is selected if one of the addressees is on the watch
list. MP allows the operator to alter this list so that messages for guests

may also be received. This is also useful if one unit must temporarily
support or reh,!ce another and must receive its messages.

The AIUTONOYS system requires that each addressee be further identified by
a routing designator which allows AUTONOYS to select the intermediate relay
stations to be used. This has been i major source of costly errors and lost
messages in manual systems. An error in one character of this routing
indicator can cause a message to reach an unintended destination. In some
organizations, where the addressees are "mobile" (e.g., ships or traveling

salesmen), routing indicators must be updated frequently, which results in
still more possibilities for making errors. MP automatically supplies the
routing ndicitors for outgoing messages, using an internal routing indicator
list. An optional feature Is its ability to monitor incoming messages and

12--2 SOFTWARE ENGINEERING PRINCIPLES
14--25 July 1980

MP. 1 The UGH Message Processing (MP) System

EXAMPLE DESCRIPTION

Fapsan Rat

Cognizant Engineer
UGH Corporation

Introduction

The UGH Message Processing System (MP) may use a variety of UGH computers
from the large 2PIE to the small UGH-20 to provide an integrated support
system for any organizatio requiring rapid and widespread distribution of
messages to organizational units in geographically distributed locations. The
UGH MP is designed to assist in every stage of message distribution beginning
with the input of the draft message into the system, including automatic
control of the communications equipment, the production of periodic reports
about the status of the system and the messages that it has processed, and
including (ortional) an interactive information retrieval facility to allow
managers to check on the status of the system or any message that has been
submitted to it in the recent past. The UGH MP is highly modularly structured
and can be tailored to meet the needs of any organization. As a result, its
adaptability to changing needs is assured.

Interfaces and Functions

The UGH MP is designed to interface with and utilize the services of the
world-wide AUTONOYS communications network. This network includes direct RF
ship-to-shore communications, satellite relayed communications, and high
capacity overland channels and is continually being expanded to include the
most modern communications techniques. AUTONOYS is an existing communications
network which has evolved over the years, starting from a fully manual system
using very noisy (error-prone) communications channels, but has been adapted
to take advantage of computer control as well as improved communications
equipment. Because some of the low-traffic nodes on the AUTONOYS network are
still manually controlled and some of the channels are still quite unreliable,
all changes to the original AUTONOYS communications conventions have been made
upwards compatible. This has resulted in a rather complex communications
protocol. The MP is designed to produce messages in any of the AUTONOYS
formats and is designed to be adaptable to the new formats which are expected
to be introduced as AUTONOYS is improved.

It is expected that the organizations which UGH MP will serve will
each have their own internal message conventions and guidelines. The MP
adjustable user interface is designed to assist an operator with converting
internal messages to external messages. MP can even assist with internal

SOFTWARE ENGINEERING PRINCIPLES 12-1

14-25 July 1980

. A

The UGH Message Processing (MP) System / Doc. MP.l

report any inconsistencies between the routing indicators on these messages

and its own list to the operator. This feature leads to greatly increased

reliability if the routing designators change frequently.

Increased communications reliability is in fact one of the major advant-

ages of using MP. Checking for errors and inconsistencies is performed at

every stage of message processing. MP really "knows" the AUTONOYS communi-

cations conventions and checks more carefully than any human operator would.

An incorrectly formatted message, a message with inconsistent descriptors,

WILL NOT BE ISSUED. Many transmission errors on incoming channels will be

detected. Such messages will be brought to the operator's attention so that

the appropriate corrective measures may be taken. It is known to be

mathematically impossible to detect all errors in messages over noisy
channels, but checking is so widespread in the MP software that the

probability of error is reduced to a lower point rhao with any alternative

system.

Naturally MP supports a variety of input devices ranging from basic

teletypes and paper tape readers to the most modern of character-oriented
graphics consoles. An interactive option provides the most modern prompting

and computer support of message input. With this option, the operator will be
"prompted" for each item of format information whi'h AUTONOYS requires. He

can't forget anything and need not constantly refer to the AUTONOYS operator

manuals. This can greatly increase the productivit"y 3f the operator and make

him feel "supported."

Another option available is called the remote message drafting option

(RMD). This allows the individual responsible for composing the text of the

message to do so at a terminal with the aid of an advanced text editor.

Individuals authorized to release a drafted message are given passwords and/or
key controlled terminals so that they can authorize release without the

existence of a hard copy which is transmitted to the operator -ith signature.

As soon as release is obtained, the text is already in the sy m and can be

composed and transmitted almost instantaneously. Possible errors in entering

the text are eliminated by this option.

UCH MP FAMILIES

1he UGH MP 3':".tware is actually a "family" of systems, formed by the

inclusion o' o~tional features (some of which are mentioned above). The

hardware support available is also a family, in tuo senses. First, the

permanently located "base" versions of MP are designed to run on the UGH 2PIE

computer family, which provides a wide range of upward compatible processors

that share peripherals. M? requires a certain minimum hardware configuration

depending on the supported options, but it will run on any of the 2PIE range,

although larger processors are recommended for the base systems to realize

the best MP performance. The 2PIE range was not designed for rugged mobile

installations, and since MP is of extreme value in this setting, the system is

also supported on the large UGH-? (UGH-VAN) computer and on the smaller UGH-20

minicomputer. Although the full software system is available on UGH-7, the

SOFTWARE ENGINEERING PRINCIPLES 12-3

14-25 July 1980

SEC. 12 / MESSAGE PROCESSING (MP) SYSTEM

incorporai,;t of some features of the software family is of doubtful value.
Only a sut,, of features is available on UGH-20. (Neither of these hardware

systems i onpatible with UGH 2PIE hardware.)

There si a complex interaction between the hardware required to support a

given UGH MP feature, other features necessarily included with it, and the
capabilitim of the resulting system. Some examples will make this inter-
action cle, .

UGH MI ;.an be configured with optical character readers (OCR) for input

text. Of -ouise, the software support for this feature is useless without the
OCR periphfal device itself. This device is available only on the 2PIE series

as a standard option. (Although offered as a field-modification item for
UGH-7, no -ich modifications exist at the present time.) Furthermore, the OCR
is used by rte system only in connection with the operator's console station.
It is asstia-,! that the operator will use the OCR for the input of authorized
text which he receives in hard-copy form. Thib usage therefore alters the
remote messag- drafting option, if it is selected. The hard-copy message is
scanned only for comparison with the internal file copy that was created
earlier witri RMD, and the operator advised of any inconsistencies. Since some
machire p;iatKag facility is required for OCR, it is likely that the remote
message dmU: ing options should be specified whenever OCR is specified.

The I generat on and transmission option allows the complete hardware-
software '-~ em, along with the crucial data stored within it, to be auto-
matically , a real test and its performance evaluated. A message is
generated, avid addressed to the same unit which originates -. Using the
complete facilities of the system with regard to the watc0 4 automatic

routing of internal messages, etc., the message is sent av. all is well)

received. However, the message is flagged so that upon re,',:. :, a complete
description of the system performance is creat,d and made available to the

operator. In conjunction with another MP system, thi: testing can actually
involve two or more distinct units, but the external system can also be tested
by routing an internal message over an arbitrary route and checking it
specially when it arrives in the specified way. MP creates such test messages
on command without any operator control except the request to perform the
test. The selection of this option evidently requires the complete
UGHTRANSR hardware interface, and the additional features of automatic
selection of communications setup from routing indicators, and monitoring of
incoming routing for consistency. Although this enabling capability is
available on UGH-20, the test option is not recommended for this small machine
because it would degrade other functions.

Although the following table is not complete, it does include all
MP options mentioned in this brief description, and gives an idea of the
relationship between the hardware and software families according to the
capabilities selected. As an example of the use of the table, capability "A",

the information retrieval opticn, requires at least an UGH-VAN hardware system
with extended mass ctrrrage ("Z") and memory ("Y"), and cannot be selected
without also selecting the message retention capability ("B").

12-4 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

_"Ma"

The UGH Message Processing (MP) System / Doc. MP.I

TABLE UGH MP Hardware and Software Families

Hardware and

Capability UGH-2PIE UGH-VAN UGH-20 Other Capabilities

A Information retrieval * * ZYB

B Message retention(l) . . . Z

C Automatic selection * * * X
of communications

D Verify incoming * * *

routing indicators

E Operator prompting * *

F Remote message * *

drafting

G OCR input * *(2) WAF

H Test generation * * * XABCD
and transmission

Hardware codes:

Z Extended mass storage (large disk)
Y Extended memory
X UGHTRANS interface
W OCR peripherals

Notes:

(1) Retention period is 1, 3, or 6 months. Only the first is available for
UGH-20, and the longer periods require further mass storage extensions.

(2) Requires a field modification to install OCR peripherals.

DELIVERY

UGH MP will be delivered 2-1/2 years after receipt of the first signed
purchase contract. Later versions will be available with shorter delivery
times.

SOFTWARE ENGINEERING PRINCIPLES 12-5
14-25 July 1980

__ _ _ _ __ _ _

MP.2 MP Basic Modular Structure

EXAMPLE DESCRIPTION

Introduction

The UGH MP is designed to be a highly modular piece of software that can
be easily adapted to meet the needs of individual users as well as to changing
AUTONOYS conventions.

To meet the needs for adaptability, the system is divided into a number of
modules each of which has a precisely defined task. Communication between
modules has been limited to well-defined data structures stored on disk and a
sophisticated intermodule communication facility implemer.u d as part of a
system "kernel."

This document is designed to provide an overview of the basic system
structure together with a brief introduction to the function of each module.
Detailed functional specifications of each module as well as interface
definitions will be provided in separate documents.

Common Characteristics of Modules and Intermodule Communication

Each module is designed to perform a given step in the processing of a
message. Each one is designed to function independently of the others,
starting its processing of a message and carrying this processing through to
completion. Work is sent to a module through the system kernel in the form of
a Work Control Block (WCB). Modules are called READY when they have one or
more WCB's waiting for them. At any one tine, at most one module is RUNNING.
The RUNNING module is allowed to execute until it releases control because it
has completed its work or for some other reason (see below). There may be
brief periods of interruption of the RUNNING module to handle machine
interrupts, but the RUNNING module is always resumed and is not cognizant of
the pause. Some modules that require long processing times will relinquish
the processor before finishing with a message in order to allow other messages
to be processed. In such cases, the module sends itself a WCB before releas-
ing the processor. This WCB contains the information necessary to allow the
module to pick up where it left off.

The other form of communication between modules is through data kept on
disk. For example, the text of the message being processed and a Message
Description Block (MDB) containing the primary information about the message
are stored on disk. The DC module will bring these data into core for
processing when it receives a request (by mea a WCB).

SOFTWARE ENGINEERING PRINCIPLES 12-7

14-25 July 1980

SEC. 12 / MESSAGE PROCESSING (MP) SYSTEM

Overview of 'ci System Modules

The frYl ,wing are the main software components of the system.

1. The ;,stem Executive (EX)

Th-' KY controls the scheduling and communication between the

remaining moc,::Ies of the system. When one module wishes to communicate with
another, it rles so by preparing a WCB for the other module. It does this in
a predefined core location. It then calls the EX routine Send Work Control
Block (SWB,, which queues the WCB against the recipient. If the recipient's
queue was previously empty, it marks the recipient module READY and enters it
in the queue *f modules waiting for scheduling. EX is also called whenever a

module signal- completion. If the module still has WCBs in its input queue,
it is place" 4n the list of waiting modules. If not, it is marked NOT READY.
EX then determines which module will run next.

2. Message Analysis (MA)

The f:imary task of MA is to examine the raw message text (incoming

and outgoinv' Identifying the principal message components and detecting
format error- in the message. During this process, key information is
extracted ,: the message and stored in the MDB. At the same time, a record
of message rc... ved and channel is made. MA is also responsible for recording
the statu. ; annels and will not release a message to a channel that cannot
handle it.

3. Screening Module (SC)

Primary purpose of SC is the detection of messages of interest. To

this end, SC examines the list of message addressees and compares it with the
WATCH LIST (made available by Data Control Module (DC)). SC also adds routing

indicators to outgoing messages and can check incoming message routing
indicators. Messiges that are not of interest are sent by means of a WCP to

the terminal control module (TC). Accepted messages result in a WCB being
sent to the Log Maintenance Module (LM).

4. Message Composition Module (CO)

This module is responsible for assembly of the complete message as it

is to be transmitted. Information is received from the other modules (e.g.,
routing indicators from screening) and the completed message is then sent to
MA where it is checked as if it were an incoming message. The optional prompt-
ing package is part of this module if purchased. CO provides text editing
facilities allowing modification of text previously input. These facilities
keep control until the operator indicates that he is done editing and asks for

composition of the final message.

12-8 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

MP Ba~ic Modular Structure / Doc. MP.2

5. Terminal Control (TC)

TC is responsible for all direct communication with consoles,
including teletype, printers, and CRT devices. Terminal Control neither
interprets the input nor decides what to output -- it is simply a standard
interface between the other modules and the terminal.

6. Equipment Control (EC)

This module is responsible for control of the UGHTRANS devices. It
receives its WCBs from OP.

7. Operator Control (OP)

This module implements the interfaces to t - system control officer.

It allows him, for example, to request reporte, ch circuit connections,
verify connections, request tuning, and define a ailaole frequencies. This
module implements a user-oriented interface with mnemonic co unands, but relays
all commands to other modules for execution.

8. Traffic Output (TO)

Traffic output is in control of a message during its actual trans-
mission. It retrieves portions of the message from disk and causes them to be
sent to the I/0 devices. It verifies that no line contains more than 69
characters.

9. Data Control (DC)

This module is responsible for the maintenance of various lists of

data used by other modules. For example, DC finds and allocates disk storage
for the WATCH LIST, MDBs, and routing indicators. START and END addresses for
the working disk storage areas of cther modules are also kept by this module.
DC does not issue control commands to the disk, but simply sends requests to
DK (in terms of track and sector) where the actual I/O commands are generated.

10. Disk Control (DK)

All requests to use the disk are queued as WCBs for DK, thus making
sure that the disk is not requested to carry out to access requests at once.

SOFTWARE ENGINEERING PRINCIPLES 12-9
14-25 July 1980

V

SEC. 12 /MESSAGE PROCESSING (MP) SYSTEM____________

11. LOG Maintenance MLM)

This module is responsible for updating all lists used in the
informatior retrieval and report generation functions. Space is allocated by
DC and actual data transfers by call to DK. Among the logs kept are:

1. list of all messages received;
2. list per channel of all messages received;
3. list of messages originated;
4. list of messages sent; and
5. list of messages rejected (optional).

All entries in these logs are complete MDBs that include the address of the
full text on disk.

12. Initialization (IN)

This module performs all actions needed at system start. It is
normally only called at that time.

13. Information Retrieval Module (IR)

This module allows officials to obtain information such as:

"What message came in on channel 3 at 1500?"

"Was message transmoiginted h?"

" Was
message

orignta

sited
?r"

12-10 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

MP Bqisic Modular Structure /Doc. MP.2

E-)

z

'-44

00

.....

0 .4
0

SOFTWARE ENGINEERING PRINCIPLES 12-11
14-25 July 1980

SEC. 12 /MESSAGE PROCESSING (MP) SYSTEM

(LX not shown) IN 0 UGH Hardware

D P Software Module

Terminals

Inercio Pt

I>C

pC

OLCPIGRMO G M OUE

12-1 SOFWAR ENGNEERNG RINCPLE

14-2TJulN198

SC

MP.3 MP Detailed Modular Structure

EXAMPLE DESCRIPTION

Functional descriptions are attached for some of the primary modules of
the UGiH MP system. Only the "message-processing" group MA, SC, CO, aud the
"lexecutive group" EX, DK, DC are included. For other modules the capsule
descriptions of MP.2 are sufficient. Following the module descriptions are
details of the Work Control Block by which modules communicate with each
other. A useful summary of module functions is given below:

The Modules of MP: A Summary

CO: Message Composition -- Editing and aisembly of messages .o be transmitted.
DC: Data Control -- Storage allocation for data, both core and d Ek.
DK: Disk Control -- Controls disk access.
EC: Equipment Control -- Controls UGHTRANS devices.
EX: Executive -- Hard1eL 3cheduling, intermodule communication, and

interrupts.
IN: Initialization -- Initializes system at start.
IR: Information Retrieval -- Retrieves information of interest from logs.
LM: Log Maintenance -- Maintains logs of MDBs.
MA: Message Analysis -- Analyzes potential messages to see if they are real

messages.
OP: Operator Control -- Handles operator interface,
SC: Screening -- Examines incoming traffic for messages of interest.
TC: Terminal Coatrol --- Handles communication with system consoles.
TO: Traffic Output -- Controls transmission of rmssages.

MESSAGE FORMAT FOR MP

The description bei',w -upptie enoug. i, :mation to understand the
actions of MP module, tn dea. with the iea; rs of messages. It ignores some
message features (such as ultila FaXo), r0 v simplifies some others.

A message consists of a number of F. rmat Lines numbered beginning with one.
(These are abbreviated FLl, FL2, etc.) In specifying these, we will use a
notation drawn from compute r language and control-card manuals.

Uppercase letters represent themselves, and where given, must appear
exactly as written. Where information is to be supplied, a lowercase name
will appear, to be explained subsequently. Where items are optional, they are
enclosed in square brackets; where a choice of itemp is permitted, these are
shown one above the other. The spaces shown are nonrepresentative: the
characters begin in the first column and continue to the end of the format
line without spacing unless explicit spaces are indicated by the symbol b.
Each line ends with a sequence of two-carriage-returns-and-a-line-feed, not

SOFTWARE ENGINEERING PRINCIPLES 12-13
14-25 July 1980

-A

SEC. 12 / MESSAGE PROCESSING (MP) SYSTEM

shown. When an item is superscripted, it is repeated that many times;
superscript, n means an indefinite repeat (but at least once).

VZCZC origin-route-part channel

where "origin-route-part" is a two-letter part of the originating routing code
(the 3rd-last and 2nd-last letters o. the code), and "channel" is a
three-digit channel number.

FL2:

precedence origin-media dest-media class content-action b
sender--orig-route serial b date time b class4 routing

where "precedence" is a single letter from a standard list, "origin-media" and
"dest-media" ea.h -letter language media codes from a standard list, "class"
is the security classification letter frcm a standard list, "content-action"
is a four-letter identifier from a standard list, "sender-orig-route" is the
seven-letter routing indicator of the sencer, "serial" is a four-digit number
supplied by the sender, "date" is the thrce-digit Julian date and "timc" the
four-digit GCT at which the message was received for transmission, and
"1routing the seven-letter routing indicator for the addressee.

FL3:

DE b sender-org-route serial date time b year

FL4:

ZNR b clas3 5 T (rouring]

ZNY

FL5:

JAN

precedence b date time Z b ... b year b

DEC

where "year" is a two-digit value, e.g., 76 for the bicentennial year.

FL6:
FM b origin

where "origin" may be a routing indicator "sender-orig-route" ur may be in
p1, trxt.

12-14 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

MP Detailed Modular Structure / Doc. MP.3

FL7:

TO ti, [routing / addressee , n In.

where "'aldressee" is the plain text corresponding to the routing indicator it
follo :J. (In the final addressee item, the period replaces the comma, and
similarly in FL8, 9.)

FL8:

[INFO b [routing / addressee,]n .1

FL9:

X MT b [routing / addressee,]n .]

FLI1:

Bf

FL12:

class subj-code text

where "subj-code" is a six-character code composed of the letter N and five
digits, surrounded by double slashes, and "text" is the message text.

FL 13:

FLI5:

serial

FL16:

null If7 NNNN

where "null" is an empty line (but with the usual ending), "If" is a line-feed.

SOFTWARE ENGINEERING PRINCIPLES 12-15

14-25 July 1980

SEC. 12 / MESSAGE PROCESSING (MP) SYSTEM _

A sample message in this format:

VZCZCDB003

RTTUZYir RUCLDBA2355 1861200 UUUURUHHLFA

DE RUJLDnA23551861200 76

ZNR UUUUU

R 1861200Z JUL 76

FM COMNAVTELCOM WASHINGTON DC

TO RUHHLFA/ALCOM

BT

U//N09999//

HAPPY BIRTHDAY

BT

#2355

(8 blank lines)

NNNN

SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

MP Detailed Modular Structure /Doc. MP.3

THE MESSAGE ANALYSIS MODULE (MA)

FUNCTION

The function of the MA module is to analyze a message to make sure that it

is a message in the sense of the AUTONOYS standard message syntax rules.
Before an incoming message is processed by the rest of the UGH MP system, MA
is called upon to mike certain that the string being processed is indeed a
complete message and not a message fragment or some portion of more than one
message. All of the remaining modules in UGH MP may proceed or the assump-
tion that the text that they are processing is indeed a message and they need
not perform error checking. To increase reliability, MA is also used to check
outgoing messages. MA performs exactly tho same analysis on an outgoing
message that it performs on incoming messages. This provides an additional
check that the other modules and the operator have done their work properly.
If MA finds that a message does not conform to the AUTONOYS conventions, it
does not release it for transmission.

Non-messages are rejected by MA and then discarded from the system, unless
the message retention option with rejected-message log is included.

METHOD

The basic approach is to identify the components (format lines) of a

message, thereby making sure that all required components are present and
that each contains the information required. The possibility of transmission
errors on AUTONOYS channels, together with the redundant nature of the
AUTONOYS message conventions, makes it inadvisable and unnecessary to demand
that a message be perfect. The MA module uses a sophisticated point system to
determine the acceptability of messages. Every time that a message passes a
certain requirement, it receives a certain number of points. Potential
messages which receive at least 80% of the required points are considered to
be messages and are passed on for further processing. MA may also improve a
messag- by making certain obvious corrections.

The message is first checked to determine that it contains Format Line I,
which is required in all messages. In a perfect message, FLI begins with
"VZCZC". MA first checks for the first character being a "V". If the first
character is not a "V", it checks to see that the second character is a "Z";
if so, the checking continues, but if the first character is not "V" and the
second charcter is not "Z", MA checks to see if the second character is a "V"
or the first character is a "Z", which would mean that either the first
character of a message was loc" or the second character of the message was the
actual first character. If either of those conditions are met, the characters
in the message are renumbered; otherwise, the checking proceeds as if the
first character really was the first character but it is incorrect. In a
similar way, MA then goes on to check for the presence of "C", "Z", and "C".
Because these characters repeat themselves in this code, no check for
misalignment is made. If all five characters are present where expected, the

SOFTWARE ENGINEERING PRINCIPLES 12-17
[14-25 July 1980K __ __ _

SEC. 12 / MESSAGE PROCESSING (MP) SYSTEM

message is given five points. If by renumbering the characters one can find
at least four of the five characters on the proper pusitions, then four points

are given. If only three of the characters can be found, two points are
given; in all other cases zero points are computed.

The next component of FLI should be the 5th and 6th letter of the crig-
inator's routing designator. There are only 42 possible combinations in the
list of AUTONOYS routing designators, so a check is made to see if the two
characters found are on that list of 42 combinations. If so, the message is
given two poLnts; if not, it is given no points for this test. The last three
characters of FLI are a three-digit channel designator. A check is performed
to make certain tiiat the three digits found here designate one of the channels
being used by the system. If so, two points are given. If all the characters

are digits but the number is not a possible channel designator, one point is
given. If a non-digit is found, no points are given. The remainder of FLI is

spaces.

A search is next made for the beginning of FL2. This must be the message

precedence. There are six possible AUTONOYS precedence codes. If the first
non-blank character after the end of F11 is one of these six characters, that
position is assumed to be the start of FL2 and two points are given. If the
first non-blank character is not a legal precedence code, a search is made for

the next non-blank character. If that is a legal precedence code, then it is
assumed that FL2 begins at that point (the message is corrected), and one
point is credited. If not, FL2 is assumed to be missing and a search is made
for the start of FL3. One point is subtracted from the score of the message
if this occurs. The next two characters after the precedence are media
indicators. These are not checked. The third character, however, is a

security class indicator. If this indicates one of the five allowed security
classes, three points are given. If not, the two neighboring positions are
checked to see if they could be a security class. A match in either position
results in one point for the Irssage, and message correction. Four spaces

after the security class, a routing indicator for the message originator is
expected. This is seven characters long and begins with "R". If the "R" is
not present in the expected position, a check is made for the previous or
following character being an "R". If so, it is assumed that the routing
indicator has been founG. Seven points are given for the routing indicator
being found where expected, five points if it is found one po-ition off. A
check is now made to make sure that characters five and six are on the list of
42 porsible 5th and 6th characters for routing indicators. If so, three
points accrue. If not, a check is made to see whether the 6th and 7th
characters of FLI passed the test. If so, they are substi~ated for the
corresponding characters at t is point. If thes; characters passed the test,
but were not the same as those in FLI, one point is subtracted from the score

and the FLI characters are substituted. The next four characters are a serial
nimber provided by the bending station. If these are all numeric, two points
are given. 71e following three characters must be a Julian date. A possible
Julian date receives two points, and today's date one more point. The next
four characters represent "time filed"; if all are numeric and a possible
time, two pointi are given. The following four ;haracters must be the

12-18 SOFTWARE ENGINEERING PRINCIPLES
14-75 Jul) 1980

MP Detailed Modulai Structure / Doc. MP.3

security code repeated four times. Ii the same cha.acter is present four

times, and it is the same as the secur*ty found on position four of FL2, 10
points are given. If the same character is present four times, but it is not
a legitimate security code, then two points are given and the FL2 code is
substituted. If it is present four times, is a legitimate code, but is not
the same as that found earlier, then (a) seven points are given, and (b) the
earlier security code is -eplaced. If the character is only present three
times, but it is a legitimate code, then six points are given. If this
chara-ter is not the same as that found earlier, the earlier one is replaced
and one point is substracted from the score. The next seven characters are
intended to be the addressee's routing indicator and must begin with "R". If

it is correct, 10 points are given. If the "R" is inco rect, but the
remainder is correcL, then nine points are given. If the "R" is present, but
the remaining code is incorrect in one or more positions, eight points minus

the number of incorrect positions are accumulated.

Format Line three is identified by the string "DE", followed by a space,
followed by the routing indicator of the originator. If this can be found,
the message is given 10 points. If a routing indicator can be found, but it
is not that which was found earlier, then seven points are given. If the
routing indicator is found, but the "DE" is missing, then six points are
given. The next four characters must be the sender's L rial number again. If
this is found and matches that found earlier, then five points are given. If
four numeric characters are found but they do not match those found in FL2,
then three points are given. If any non-numeric characters are found, then no
points are given. The next characters must be a repeat of the Julian date.
A legal date which matches that found earlier brings seven points. A legal
date which does not match that found earlier brings four points. The
following four characters must be a filing time. If they are all numeric,
then three points are zredited; if they are not numeric, no points are given.

Format Line four must begin with "ZNR" or "ZNY". If this is found, eight
points are credited. If it is found with one or two errors, four points are
credited. A search is then made for #he classification repeated five times.
If the previously determined classification is found five times, 10 points are
credited. If it can be found three or four times, five points are credited.
If a legitimate code is found five times, but it is not the same as that
determined earlier, then five points are credited and the higher
classification is used. The other occurrences of the security code are
replaced by this higher classification.

MA continues in this fashion until the entire message has been processed.

After determining whether or not the message paases the tests (by
obtaining at least 80% of the possible points), WCBs are prepared and sent to
other modules. A WCB is sent to the screening module. If this is an outgoing
mersage, a WCB is sent to the TO module. If the messape has failed, WCBs are
sent to DC to remove the message from the system. In all cases, WCBs are sent
to the LM moiule to record the disposition of the messpge. A WCB is then sent
to the DC module requesting that ic allocate disk space to store the corrected

SOFTWARE ENGINEERING PRINCIPLES 12-19

14-25 July 1980

SEC. 12 / MESSAGE PROCESSING (MP) SYSTEM

message text. (DC will eventually do so and by a WCB will cause the DK module
to transfer the message to disk. DK will, on completion of this transfer,
send a WCB to DC which can then release the core space for the storage of an
incoming future message.) Before terminating itself, MA prepares an MDB for
the message. This is allocated space by DC and stored by DK. The disk
address of the MDB for a message is always given in fields 15-17 of a WCB.

I

12-20 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

MP Detailed Modular Structure / Doc. MP.3

tHE SCR'ENINC MODULE (SC)

FUNCTION

Once a string of characters, whether incoming or outgoing, has been

accepted by MA as an acceptable message, it must be screened to see if it is
intended for a recipient served by the installation. Outgoing messages must
be screened as well as incoming messages because messages may have multiple
addressees and some of those addressees may be at a location served by the

installation. The message text, zs stored on the disk, is searched for the
addressees, and when they are found, a list is prepared in core. This is then
compared with the WATCH LIST obtained from the DC module. SC produces an
internal routing list, which is the intersection of the two lists (addressees

and W..- If this intersection is empty, and the message is incoming, SC
takes no action. Otherwise, WCBs causing further processing of the message
are prepared.

METHOD

Since 'he addressees are to be found in Format Line seven and Format Line

eight, the first step is to find the starting location of Format Line seven.
This is done by proceeding stepwise through the message. The start of FL is
identified by the string "VZCZC". If this string cannot be found anywhere in
the first 20 characters, it is assumed to have been destroyed by noise. To
assist future modules in their processing, SC corrects the start of the
message by inserting VZCZU. The end nf FLI is identified by the three digit

channel number. The start of FL2 is identified by searching for the
precedence code. The precedence code can be found in field 9 (Byte 27) of the
WCB. As a further check that FL2 has been found, the classification code is
checked for two characters after the supposed precedence code. The end of FL2
is identified by searching for thp four occurrences cf the classification code
and then the routing indicator. When these are f-lind, it is assumed that we
are at the end of FL2 and the search for "DE" whicih irndicates the start of
FL3, is begun. Having found this "DE", the end of FL2 is signaled by the
occurrence of seven digits in a row. FL4 is identified as the string "ZBR" or
"ZNY", followed by five occurrences of the security class. Because FL5 is so
short, we search for the end of it as indicated by the clear-text month and
date. FL6 must be clearly and certainly identified since the information that

we ar., looking for begins in FL7. FL6 contains "FM" followed by a seven
letter routing indicator beginning with "R", or the originator in plain text.
The next non-blank character is assumed to be the start of FL7.

The start of FL7 is marked by a "TO", followed by a list of addressees

separated by commas. Each addressee consists of a routing code, followed by a

"", follrwed by the identifier of the addressee. The program searches for

the "", then urites in its working list all characters until it finds a ","
It then searches for the occurrence of either a "/" or a ".". A "." indicates

the end of the TO list and FL7. The start of FL8 is indicated by the string

"INFO". The addressees which are listed after this are listed in the same

SOFTWARE ENGINEERING PRINCIPLES 12-21

14-25 J,,ly 1980

7

SEC. 12 / MESSAGE PROCESSING (MP) SYSTEM

format. Hence, the same algorithm is applied, search for the "1,copy the
addressee until "," or " .The SC module handles information and action
(to) addressees identically.

After composing the list of addressees, SC sends a WCB requesting that DC
bring the WATCH LIST into its core area. It then terminates until it receives
a WCB, which informs it that-the WATCH LIST is now in core. It then proceeds
to search for each of the addressees in the WATCH LIST. Each one that is
found is copied into a list. If this list is empty, then processing of
incoming messages stops, unless rejected message retention or the routing
indicator check option has been selected. For outgoing messages (and for
incoming messages, if one of these options has been chosen), the module next
requests that the routing indicator directory be brought into core. This is
done by means of a WCB to DC. The routing indicator directory contains a
routing indicator for all addressees of interest to the installation. Each
addressee is looked up in this directory, and the routing indicator is
compared with that found in the message. If it is different, the discrepancy
is reported to the operator who is given the opportunity to correct either the
message or the directory. An additional option allows the SC module to simply
add the routing indicator found in the directory to an outgoing message on the
assumption that the routing indicator in the directory is the correct one.

12-22 SOFTWARE ENIGINEERING PRICIPLES
14-25 July 1980

MP Detailed Modular Structure / Doc. MP.3

THE MESSA7E COMPOAITION MODULE (CO)

FUNCTION

The Message Composition Module (CO) is one of the most significant new

features and innovations of MP. It is designed to take most of the drudgery
out of AUTONOYS communication. The characters in an AUTONOYS message can be
divided into three categories:

(I) Format characters: (e.g., "VZCZC", "TO") which are present in every

message and serve primarily to clearly identify message components.

(2) Redundant characters (e.g., nine repet-itions of classification code,
second insertion of station serial number, etc.)

(3) Information charact-"rs: characters such as the message text, the
addressees, etc., which could not be deduced from the remaining text.

The purpose of the CO module is to spare the operator the work of typing
in anything but "real" information characters. The format characters are
automatically supplied by che CO module; the redundait caaracters are inserted
in the proper portions of the text as soon as the first piece of information
has been supplied. For example, once the message classificat;on has been
input to the system, it can be inserted in the text automatically wherever the
AUTONOYS conventions require it. Even the routing indicators are redundant
information; CO requests the routing indicator directory and adds this infor-
mation -o the message as soon as the addressee has been named.

METHOD

OP sends CO a WrB indicating that the operator is ready to input a

messige. CO's first action is to send a WCB to DC requesting that core space
for message composition be supplied. Upon receipt of the WCB from DC, which
indicates where this core area is, CO initializes the message by writing the
characters "VZCZC" at the start of the core area. It also writes the 5th and
6th characters of the installation's own routing designator in core. It then
sends a WCB to the OP module requesting that the operator be prompted to state
the channel designator. The response WCB from OP should contain the three-
digit channel. If this is not on the list of possible channels, the operator
is prompted again (through OP, of course). A proper channel completes Format
Line I (FLI).

Next, a WCB is sent to OP which requests OP to prompt the operator for

message precedence. When this information is received, it is stored in the
MDB as well as inserted 4n the message being composed. Next, the operator is
prompted for a media code ind this one byte code (either 'T', 'C', 'P', or 'Q')
is inserted twice in the message. omilarly, the operator supplies the
content-action code and the classification code. A direct reqvlest t,) EX
obtains a four-digit station serial number, which is then inserted in the

SOFTWARE ENGINEERING PRINCIPLES 12-23

14-25 July 1980

...... _jig. .

SEC. 12 / MESSAGE PROCESSING (MP) SYSTEM

message text as well as the MDB. The next step is to prompt the operator to
supply Julian date and filing time. This information is also checked to make
certain that it is feasible (possible date, time less than 2400, etc.), and
then insprted in the message text as well as the MDB. CO then goes on to
insert th, message classification code four times in the text. The operator
is then piompted for the name of the first addressee. When this is received,
a WCB is sent to DC to bring the routing directory into a specified core area.
The addressee is looked up in the routing directory, and the routing indicator
(seven characters) is inserted in the text as well as stored in the MDB.

CO now is able to supply FL3 completely automatically, since it consists
of format information (DE), the originator's routing indicator (constant for
the system and already inserted in FL2), the station Serial Number, filing
date an, time, which can be obtained from the MDB, having been supplied
earlier, and year. To obtain FL4, the operator is prompted for a three-
alphabetic-character transmission (which must be "ZNR"), and then the
classification is inserted five times. FL5 is composed of the precedence,
date, and time once more, and then the month and year in clear text together
following a "Z". This is all supplied on the basis of previously stored
information (once a month the system must be reloaded with a new month and
year). FL6 is also supplied without bothering the operator since it consists
of the format information "FM" together with the name of the originating
station and/or its routing indicator.

CO continues in a similar way using information stored inside the bystem

together 'th a knowledge of the format to produce the message with the
minimum amuint of operator intervention. Text editing facilities are provided
for the message text itself, but not for the fixed format information.

U'hen the message has been completely composed, the operator is prompted
for a release number. When this is supplied and verified, a WCB is sent to MA
to check the message. Release by MA will result in a WCB to TO which will
control the actual transmission. 1qCBs are also sent to DC (to release storage
areas no longer needed), to LM (to make the appropriate journal entries), and
to SC, which checks the message to see if there are internal addressees.

EXECUTIVE GROUP (EX, DK, DC)

These modules (along with TC and EC, not described here) are responsible
for control of UGH hardware devices. The primary device is the UGH processor,
which EX schedules; DK and DC manage disk operations and allocation of disk
and core.

12-24 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

MP Detailed Modular Structure / Doc. MP.3

THE SYSTEM EXECUTIVE (EX)

FUNCTION

The System Executive Module (EX) is central to the UGH MP system, yet

itself takes only a supporting role in that system. EX arranges for the
proper functioning of the modules that actually carry out the MP tasks.
Several MP resources are controlled by EX and dispensed as needed. Among the
EX resources, the UGH memory and logical and arithmetic processing units are

primary, and all others are of secondary importance. Examples of secondary
resources are the system clock and other centrally stored values such as the
date, and unique sequence numbers. In controlling the UGH processors, EX also
has control of hardware interrupts, and may itself perform a small amount of
processing as the initial part of interrupt service. An important special
class of interrupt service is response to software-initiated interrupts from
other modules requesting service.

METHOD

Nothing happens within the UGH MP system until an interrupt occurs. Then
EX takes control, and deals with the situation directly, or arranges that it
will be handled by another module, which EX schedules with a proper Work
Control Block (WCB).

The simplest kind of interrupt is a request from a running module. In
each such case, a code is provided to describe the necessary action. Simple
requests (such as for the time, or a unique sequence number) are handled and
dismissed immediately. The requesting module resumes as if it had merely
called a subroutine. Of course, the effect of the request often extends
beyond the requesting module; for example, the sequence number is updated.
More complex requests result in EX passing work to another module (not EX

itself). This is accomplished by generating an appropriate WCB, queuing it
against the necessary module, and returning to the requesting module. If the
requestor must await the completion of the other module's work, it must
request termination (an immediate E:: service) following return from sending
the WCB; when the other module is done, it must send another WCB to restart
the original requestor.

The MP modules operate as independent processes, but they differ from
arbitrary processes in a general-purpo.e operating system in that EX has full
information on each one and -an predict the resource needs of each. This
information makes many of EX's tasks easier to perform. Further, preemption
of the processor is usually difficult, but EX never preempts a running process.

EX uses a first-come-first-served (FCFS) queuing scheme, with emergency
override. The queue order is determined by the list of pending WCB's, which
are kept in the order of iequest. When one module requests work from another,
a new WCB is appended to the end of this list. When a module terminates, the
first WCB in the list is examined, and if the needed module is in core, it

SOFTWARE ENGINEERING PRINCIPLES 12-25

14-25 July 1980

SEC. 12 / MESSAGE PROCESSING (MP) SYSTEM

assumes ontrol. If not, the queues of pending WCBs are examined, and the
core resident module which will be invoked last is removed from core. There
is one exception to FCFS queueing. A module may request "priority" service,

and have a WCB placed at the very head of the queue.

12-26 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

4. A

MP Detailed Modular Structure / Doc. MP.3

THE DISK CONTROL MODULE (DK)

FUNCTION

Whenever a module requires the use of UGH mass storage (typically disk

packs, although this is dependent on the configuration), it sends a WCB to the
disk control module (DK), specifying the track and sector, the length (in

sectors), and read/write. DK does not check the address for validity for the
requesting module because addresses are obtained from the data control module
which verifies them (DC is the primary source of work for DK in any case).
Two modes of DK operation are available. First, the request can be an I/0 and
wait. The operation is started, and EX terminates the requesting module.
When the completion is signaled to DK, it sends a WCB to the requestor to
continue. Second, the request can merely start the disk operation by sending
a WCB to DK, but the requesting module continues to be READY. Later, the
module may ask EX if the request is yet finished and itself take appropriate
action. Use of the second kind of operation realizes a considerable saving
when a module can start its requests ahead of time or has other work to do
while the request is honored.

METHOD

DK uses the "scan" technique to manage multiple requests and minimize
positioning contention. While one request is in progress on the disk, a
number more may be queued. DK accepts their WCBs and forms a list of the
needed addresses in order of arm position. It then freezes this list
(additional arriving requests start a new one) and makes a "scan" across the
disk servicing the requests as their addresses pass under the heads. This
oneration may reorder the requests slightly, but DK takes care to treat
ultiple requests from the same module in the order they arrive.

SOFTWARE ENGINEER TNG PRINCIPLES 12-27

14-25 July 1980

mmI

SEC. 12 / MESSAGE PROCESSING (MP) SYSTEM

THE DATA CONTROL MODULE (DC

FUNCTION

* The Data Control Module (DC) has two related functions. First, it

allocates space on the disk for all modules. In this, it is something like
part of a general-purpose file system, although the spaces are not named
permanently. To obtain space, a module requests the size needed, and DC
returns the address of such a block. Deallocation of the space requires
another request. Similarly, DC allocates core memory for data. (EX allocates
core for module code.)

The second DC function is also similar to part of a file system: DC knows

about certain data sets which are important to all phases of MP operations,
and aids modules in accessing these data sets. For example, the WATCH LIST is

* a permanent part of any MP installation, and DC allocates the space for it.
But DC also allows modules to use the WATCH LIST without knowing its format or
disk address, as if it were a sort of "file" with variable blocking. A module
can thus simply "read" WATCH by sending a WCB to DC, and receive a buffer ok
data in response. In a sense, each message within the system is a "file" of

* this kind, since DC will access it for a module from its MDB-

METHOD

Space allocation on disk is done in variable-size segments that are a
multiple of a minimum unit. DC controls the available space by keeping a list
of addresses of the beginning and size of all in-use space. When a request is
made for space DC returns the first block (or part thereof) which is large
enough to meet the request. Although this operation can cause disk "checker-
boarding,'' the transient requests for space are not a significant fraction of
the total space in use and are of short duration. The space allocated to
longer-lasting items like the WATCH LIST, message texts, and logs is allocated

* contiguously to avoid "holes." The two kinds of space work towards each other
* from opposite ends of the address space -- temporary allocations from the low

end, permanent allocations from the high end.

DC may also be called upon to allocate core memory for purposes that are
not clearly connected with a particular module (otherwise the core is part of
the module itself, allocated by EX). The primary such usage is the memory for
messages themselves, allocated from main memory in a manner similar to that of
tem')orary disk allocation. For the "permanent" data sets such as the WATCH
LIST, DC does not allocate the memory into which they are read. That is the
funL-.tion of the module requesting the data, and DC merely calls uipon DK to

* perform the transfer. The requesting nodule must verify that the memory area
piovided is adequate.

No actual disk operations are performed by DC, but rather by DK upon
receipt of a WCB containing a description if the operition. However, DC does
r(Qll itself to obt-in memory space for bufferF, and to allocate temporary disk
space (in particular to hold the available space list itself).

12 28 SOFTWARE ENGINEERING PRINCIPLES
14-25 Juky 1980

MP Detailed Modular Structure / Doc. MP.3

WORK CONTROL BLOCKS (WCB's)

The communication mechanism between modules is the Work Control Block,
which any module can pass to any other (including itseli) by reans of an EM
request.

FORMAT OF A WCB (WORK CONTROL BLOCK)

WCBs are the primary means of communication between the modules of MP.
All requests from one module to another are made by composing a WCB in a
predetermined core area, then calling EX tn ,e d it to the recipie,.t. Each
WCB concerns a specific message, and the WCA identifies the message of concern
both by means of the message identifier and . means of the disk address of
the message text.

In the following, the length of each WC1. -ield is given in bytes.

FIELD # NAME LENGTH PURPOSE

0 SIZE 2 Size in bytes of this WCB

1 SENDER 2 Identifies the sending module

2 .ECIP 2 Identifies the intended recipient

3 r"Q 3 Identifies the function requested of recipient

4 DSKTR 4 Determines the track # on disk where message is

5 DSKST 2 Determines position on track where message starts

6 DSKLN 3 Length of message text in sectors on disk

7 TNNO 4 Serial number of message

8 CLASS 6 Classification # . message

9 PREC 1 Message precedence

10 AROUT 7 Routing indicator of originator

II SEC 1 Security code of message

I? DIRECT I 1 = incoming. 0 = outeoing

13 IRDSUTC 4 Starting position of internal routing list on disk

14 DSULN 2 Length of internal routing list in sectors

15 MDBTR 4 Disk addresb c4 MDB (track)

16 MDBST 2 Track position of MDB

17 1DBLN I Length of MDB in disk sectors

id PRIO I Queue priority of WCB

19 SEQ 4 Sequence numbe- ot WCB

20 REQDAT 0-10 Request-dependent data

SOFTWARE ENGINEERING PRINCIPLES 12-29
14-25 July 1980

AD-AO87 997 NAVAL RESEARCH LAB WASHINGTON DC /i 9/2

SOFTWARE ENGINEERING
PRINCIPLES(U)

JUL 80 L J CHMURA, P CLEMENTS, C L HEITMEYER

UNCLASSIFIED NL

mommmmmmmm,
iimIhiiiiimEm

.1......,.mmmmm

1111 '11121 125
__________ 132 111112

. 1.8

M ICROCOPY R S([, tLJD(N -I :HARt

S-C, 12 I MESSAGE PROCESSING (MP) SySTEM

RVQ # Description REQDAT Contents
I Response to a previous WCB request SEQ of request and response data
2 Create new message None
3 Request core Size
4 Request temporary disk space Size
5 Request permanent disk space Size
6 Prompt operator Prompt query

7 Test and verify message None
8 Release core Address

9 Release disk Address

10 Transmit message None
11. Log data Log identification and data to

logged
12 Screen message None
13 Direct EX request Desired information
14 Disk operation (wait) Description of operation
15 Disk operation (proceed) Description of operation
16 "Read" permanent data set Data set identification and

buffer to use
17 "Write" permanent data set Data set identification and

buf fer to use
18 Drive UGHTRANS UCG!TRANS function
19 Retrieval request Noie
20 Terminal read/write Data or pointer to it

on temporary disk
21 Terminal attention request None

12-30
SOFTWARE ENGINEERING PRINCIPLES

14-25 July 19110

MP Detailed Modular Structure /Doc. MP.3

CO l¥

x

C O D C . . . f-

1 34
DC 3 J3 DK

-,J - _ 3 X sends WCB to Y
18 type 3 REQ

DR EC

15 J Y sends UCB to X
EC IR type 5 REQ

3 14 15

IR ~ j JLM

LM 5 14 15 MA

___ 141~ 112,MA 74J _j ._i OP
1 14 19 1O I OP

__, 6 _ 143 1j 1j Sc
16 14

sc 12 ._ ._ 12J TC

12J lj 1 J1 oi
TC '1TO

14 18 2

____ _
__ __

_ ___ 10j

The REQ functions are listed below by number.

MP WCB ROUTING DIAGRAM

SOFTWARE ENGINEERING PRINCIPLES 12-31

14-25 July 1980

_ _ _ _ _ _ _

MP. 4 MP Improved Modular Structure

EXAMPLE DESCRIPTION

Introduction

The original modular structure of the MP demonstrates a number of serious
and fundamental violations of the information-hiding criterion for dividing
systems into modules. This results in the excessive complexity of the system,

* as well as the fact that changes tend to involve many modules. Among the most
significant errors are:

1. Far too many modules are sensitive to changes in the external message
format. The descriptions of CO, MA, SC and TO all show a dependence
on the AUTONOYS conventions; these conventions are both complex and
subject to change.

2. Several modules have direct knowledge of disk characteristics and use
disk addresses. This makes it difficult to use another type of
storage device, should a better one become available.

3. Two different modules must know the data organization used in the
logs. Changes in the queries possible can have major effects on the
log maintenance required, and changes in the log organization will in
turn have major effects on the IR module.

4. The fact that resources are allocated by several modules without

communication will make deadlock recognition and prevention quite

5. The fact that the incoming data is modified by several modules during
their attempts to analyze it may result in subtle, hard-to-find errors.

The following is a proposal for an improved structure.

Modules

MH: Message Holder fiCR A 5.U l.4

This module is responsible for storage and retrieval of all messages.
All direct accesses to the internal representation of a message are serviced
by functions belonging to this module. The original storage of the message
and any subsequent modifications are performed by the functions belonging to
this module. The interface to this module is a set of functions allowing
other programs to store and access elements of & message, e.g., SET -CHANNEL
and GET-CHANNEL to store and read the channel number in the message. The
special character sequences at the start of various format lines are no longer
considered part of the message and are not made available. Additionally, from.

SOFTWARE ENGINEERING PRINCIPLES 12-13
14-25 July 1980

SEC. 12 / MESSAGE PROCESSING (MP) SYSTEM

the set of functions available on the interface, one can no longer recognize
the order in which the various components appeared in the original text.
Further, one cannot test to see if a given item was present several times to
provide redundancy.

If messages must be stored on backup-store devices, the data is organized
in "pages" that are then stored and retrieved by PS.

EI: External Interface Module(s)

This module is responsible for conversions between the actual message
format and the abstract format. If there are several external message formats
in use, there will be separate versions or submodules for each one.

Programs in this module analyze the incoming text, which they find stored
in buffers, identify the components of the message and call programs in the
message holder module to store the information, making it available to other
modules.

When a message is being output, programs in this module call the functions
of the message holder module to get the contents of the message fields and
then arrange the information in the proper order with the appropriate
delimiters, storing the completed message in an output buffer.

If the transmission is noise free, the input programs and the output
programs are essentially complementary and have the same "secret". If the
input data is noisy, then the input programs require additional information
that is not needed by the output programs. The input programs must know the
expected frequency and nature of errors, in order to detect and correct errors
on the basis of redundancy.

CM: Communication Modules

These modules know the comunication protocols, including handshaking and
timing. Although they control transmission of messages on devices, they know
neither the structure of messages nor the details of device control. Incoming
messages go to, and outgoing messages come from, the external interface (El)
module. Programs in the equipment control (EC) module are called to tune the
device, change the frequency, etc.

SC: Screening

This module fulfills the same function as the SC module in the old MP
structure, but it no longer requires detailed knowledge of the format, since
it uses the message holder to get the contents of the addressee lists of
incoming messages.

The "watch list" is a secret of a submodule of this module. The submodule
contains programs to insert and delete watch list entries and to search the
watch list for a specific entry.

12-34 SOFTWARE ENGINEERING PRINCIPLES

14-25 July 1980

MP Improved Modular Structure / Doc. MP.4

EC: Equipment Control

Controls UGHTRANS devices.

TC: Terminal Control

This module controls the terminal devices. It knows how to read and write
characters, how to generate line feeds, etc. The module includes separate
submodules for each terminal type.

DS: Display Module

This module displays messages for the operators. A message can be either
received over the UGHTRANS device or created with the text editor module. The
module knows how the fields of a message should be arranged in the display,
and it uses the message holder interface to get the contents of the fields.
It uses a terminal control module to write the characters to the device.

The module includes a separate submodule for each different display
format. The display formats will probably be quite different from the format
known by the external interface module.

TE: Text Editor

This module implements the command language the operator uses to create
messages. It recognizes commands and generates prompts. When the operator
inputs a message field, the text editor stores the contents using the message
holder interface.

IR/LOG: Information Retrieval and Log Storage

We have combined the information retrieval and log modules into a single
module that understands the organization of the data that has been stored
about incoming and outgoing messages. This module does not deal directly with
background memory but uses pages that are stored and retrieved by PS.

PS: Page Storage

All memory and backup-store access is centralized in this module. It
keeps files in terms of pages.

*IC: Intermodule Communication

This module is responsible for keeping the queues of WCBs between

components as they are needed. It was formerly a part of EX.

* These modules will be discussed in more detail later in the course.

SOFTWARE ENGINEERING PRINCIPLES 12-35
14-25 July 1980

o l

SEC. 12 / MESSAGE PROCESSING (MP) SYSTEM

*AL: Allocator and Scheduling

This module is the central allocator of all resources including core and
processors. It includes a "banker" to help prevent deadlocks.

*IH: Interrupt Handler

This module translates interrupts into signals for the various system
components.•

Relation between the "old" modules and the new

1. The work of EX has been divided among IC, AL and lH.

2. MA work is now done by El, using MH SET functions to store the resulting
information.

3. SC work is still done by SC, but the new SC is considerably simpler
because it uses the MH GET functions.

4. CO work is now done in the output submodules of El, which use the GET
functions of MH to get the information to put in the messages. The text
editor is now separate (TE).

5. TC's duties are carried out by the DS module, which uses the new TC module
to write the characters. Thus, the display format is separated from the
device characteristics. DS is simpler than the old TC because it gets
information for the display using the GET functions of MH.

6. EC now receives comands from the CM module. The new EC is simpler than
the old because it knows nothing about when and why things are done, only
how they are done.

7. The duties of OP are divided among several modules, including DS, CM, and
TE.

8. The work of TO is now performed by parts of MH, EI and CM.

9. DC has been subsumed in PS and AL.

10. DK is now in PS.

11. LM and IR are now the single module IR/LOG, which uses PS.

12. Initialization is not a separate module, but is performed by the
initialization routines for the individual modules.

* These modules will be discussed in more detail later in the course.

12-36 SOFTARE ENGINEERING PRINCIPLES

14-25 July 1980

4 A.9

MP. 5 MP Message Holder Module

EXAMPLE DESCRIPTION

The following is an informal functional specification of the message
holder module.

Index of Function Descriptions

VFunction Page

BIND(mn) 12-38
BLANKIT(i) 12-38
GET ACTION OR INFO 12-39
GET ADDEE 12-39
GET CHANNEL 12-39

GET CLASSIFICATION 12-40
GET DAY 12-40
GET ORIG INATOR 12-40
GET ORIGtNATOR_ -ROUTINGINDICATOR, 12-41
GET-PRECEDENCE 12-41

GET ROUTINGINDICATOR 12-41
GET SERIAL 12-42
GET TEXT(i,j) 12-42
GET TIME 12-42
NEW MESSAGE (in) 12-43

SET ACTION OR INFO(bit) 12-43
SET ADDEE(aide) 12-43
SET CKANNEL(c) 12-44
SET CLASS IFICATION(c) 12-44
SET DAYC d) 12-44

SET ORIGINATOR(c) 12-45
SET ORIGINATOR ROUTING-INDICATOR(r) 12-45
SET PRECEDENCE'p) -12-45

SET ROUTING INDICATOR(s) 12-46
SET SERIAL() 12-46

SET -TEXT(i,j,s) 12-46
SET-TIME(t) 12-47

SOFTWARE ENGINEERING PRINCIPLES 12-37
14-25 July 1980

SEC. 12 / MESSAGE PROCESSING (MP) SYSTEM

FUNCTION CALLING FORM: BINiD(mn)

INPUT PARAMETERS:

Name Type Description

mn message message to be accessed next
identi-
ficat ion

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: message designated by mn is bound. Future calls of message
information functions refer to this message

FUNCTION CALLING FORM: BT.ANIT(i)

INPUT PARAMETERS:

Name Typ Description

i integer position to be blank

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: the ith character is removed

12-38 SOFTWJARE ENGINEERING PRINCIPLES
14-25 July 1980j

MP Message Holder Module /Doc. MP.5

FUNCTION CALLING FORM: GET ACTIONOR INFO

INPUT PARAMETERS:

Name Type Description

none

FUNCTION VALUE TYPE: boolean

FUNCTION VALUE: 0 = action required
1 = information only

EFFECTS: none

FUNCTION CALLING FORM: GETADDEE

INPUT PARAMETERS:

Name Type Description

none

* FUNCTION VALUE TYPE: string -- 6 characters

FUNCTION VALUE: message addressee

EFFECTS: none

-- -- ------ ---- ------ -- -- ------ ---- -------- --- ---- -- ---- --- --- -- ----- ------ -- ---

FUNCTION CALLING FORM: GET CHANNEL

INPUT PARAMETERS:

Name Type Description

none

FUNCTION VALUE TYPE: integer

FUNCTION VALUE: channel on which message was received will be sent

EFFECTS: none

SOFTWARE ENGINEERING PRINCIPLES 12-39
14-25 July 1980

TI

SEC. 12 / MESSAGE PROCESSINC (MP) SYSTEM

FUNCTION CALLING FORM: GET CLASSIFICATION

INPUT PARAMETERS:

Name Typ Description

none

FUNCTION VALUE TYPE: character

FUNCTION VALUE: classification of message (T TOP SEC,
S SEC, etc.)

EFFECTS: none

FUNCTION CALLING FORM: GET DAY

INPUT PARAMETERS:

Name Type Description

none

FUNCTION VALUE TYPE: date

FUNCTION VALUE: day message was received for transmission as indicated
in message text

EFFECTS: none

FUNCTION CALLING FORM: GET ORIGINATOR

INPUT PARAMETERS:

Name Type Description

none

FUNCTION VALUE TYPE: string

FUNCTION VALUE: code of originating organization in message

EFFECTS: none

12-40 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

-4--.-- -

II

MP Message Holder Module / Doc. MP.5

FUNCTION CALLING FORM: GET ORIGINATOR ROUTING INDICATOR

INPUT PARAMETERS:

Name Type Description

none

FUNCTION VALUE TYPE: string -- 7 characters

FUNCTION VALUE: routing indicator for originating organization in message

EFFECTS: none

--

FUNCTION CALLING FORM: GETPRECEDENCE

INPUT PARAMETERS:

Name Type Description

none

FUNCTION VALUE TYPE: integer

FUNCTION VALUE: precedence of message

EFFECTS: none

-- --------

FUNCTION CALLING FORM: GETROUTINGINDICATOR

INPUT PARAMETERS:

Name Type Description

none

FUNCTION VALUE TYPE: string -- 7 characters

FUNCTION VALUE: routing indicator in message

EFFECTS: none

--

SOFTWARE ENGINEERING PRINCIPLES 12-41

14-25 July 1980

t --

SEC. 12 / MESSAGE PROCESSING (MP) SYSTEM

FUNCTION CALLING FORM: GET SERIAL

INPUT PARAMETERS:

Name Type Description

none

FUNCTION VALUE TYPE: integer

FUNCTION VALUE: serial number in message

EFFECTS: none

--

FUNCTION CALLING FORM: GET TEXT(i,j)

INPUT PARAMETERS:

Name 112e Description

i integer starting location
j integer ending location

FUNCTION VALUE TYPE: string

FUNCTION VALUE: the string of characters between positions i and j in text

EFFECTS: error call if no such characters in text

--

FUNCTION CALLING FORM: GET TIME

INPUT PARAMETERS:

Name Type Description

none

FUNCTION VALUE TYPE: time of day

FUNCTION VALUE: time at which message was received and filed according
to message

EFFECTS: none

12-42 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

- ---- - - -------------------------- ----------------

MP Message Holder Module / Doc. MP.5

FUNCTION CALLING FORM: NEW MESSAGE(mn)

INPUT PARAMETERS:

Name Type Description

mn integer unused integer identifier to be associated with
new message

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: bound message is now "mn" -- all functions are reset

FUNCTION CALLING FORM: SET ACTION OR INFO(bit)

INPUT PARAMETERS:

Name Type Description

bit boolean type of addressee to be stored in message
0 - ACTION
1 = INFORMATION

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: AI = bit

FUNCTION CALLING FORM: SET ADDEE(ade)

INPUT PARAMETERS:

Name Type Description

ade string addressee to be stored in message

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: addressee is added to message stored

SOFTWARE ENGINEERING PRINCIPLES 12-43
14-25 July 1980

SEC. 12 / MESSAGE PROCESSING (MP) SYSTEM

FUNCTION CALLING FORM: SETCHANNEL(c)

INPUT PARMETERS:

Name Type Description

c integer channel # to be scored in the message

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: channel stored in the message

FUNCTION CALLING FORM: SETCLASSIFICATION(c)

INPUT PARAMETERS:

Name Type Description

c character security classification to be assigned
to message

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: security classification "c" is stored in message text

--

FUNCTION CALLING FORM: SET DAY(d)

INPUT PARAMETERS:

Name Type Description

d date date to be stored in message

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: day of filing is stored in the message

--

12-44 SOFTWARE ENGINEERING PRINCIPLES

14-25 July 1980

HP Message Holder Module / Doc. MP.5

FUNCTION CALLING FORM: SET ORIGINATOR(c)

INPUT PARAMETERS:

Name Type Description

c string originator to be stored in message

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: originator "c" is stored in message

FUNCTION CALLING FORM: SET ORIGINATORROUTINGINDICATOR(r)

INPUT PARAMETERS:

Name Type Description

r string routing indicator of originator to be stored in
message

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: the routing indicator is stored in the message

FUNCTION CALLING FORM: SET PRECEDENCE(p)

INPUT PARAMETERS:

Name Type Description

p integer precedence to be assigned to message

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: message precedence is set

SOFTWARE ENGINEERING PRINCIPLES 12-45
14-25 July 1980

SEC. 12 / MESSAGE PROCESSING (MP) SYSTEM

FUNCTION CALLING FORM: SET ROUTING INDICATOR(s)

INPUT PARAMETERS:

Name Type Description

s string -- 7 characters routing indicator to be in message

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: routing indicator is inserted in message

--

FUNCTION CALLING FORM: SET SERIAL(n)

INPUT PARAMETERS:

Name Type Description

n integer serial number to be set in message

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: serial number is inserted in message

--

FUNCTION CALLING FORM: SET TEXT(i,j,s)

INPUT PARAMETERS:

Nam..e Type Description

i integer starting point for insertion of new text
j integer end point of new text
s string text to be inserted in message

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: s will be inserted between the ith and jth character of TEXT

12-46 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

MP Message Holder Module /Doc. MP.5

FUNCTION CALLING FORM: SET TIME(t)

INPUT PARAMETERS:

Name ype Description

t time of day time to be stored in message

FUNCTION VALUE TYPE: none

FUNCTION VALUE: none

EFFECTS: time of filing is stored in message

SOFTWARE ENGINEERING PRINCIPLES 12-47
14-25 July 1980

MP.6 MP Abstract Interface Module

EXAMPLE DESCRIPTION

Introduction

This paper describes the design of an abstract interface module for the MP

system. The format of messages transmitted over the AUTONOYS communications
network is defined by the AUTONOYS designers; the MP implementors will
probably not be consulted about future format changes. The abstract interface
module is intended to insulate the MP system from format changes: if the
message format changes, only the code in the abstract interface module should
need to change.

Designing an abstract interface module consists of two phases:

(1) compiling the list of assumptions about the information that will be
transmitted through the interface, and

(2) designing the functions provided by the abstract interface module.

Phase (2) is a syntax for communication based on phase (1). Since the two are
closely related, a change in phase (1) will require a corresponding change in
phase (2).

The abstract interface module for HP should be based on assumptions that
are not likely to change. Consequently it should not be based on specific
characteristics of AUTONOYS, such as the order of message fields, the control

characters separating fields, or redundancy included for error checking. The
interface should be sufficiently general to apply to any message transmission

protocol that might reasonably be used to transmit messages to and from the MP
system. Care must also be taken that each assumption on the list is both a

necessary requirement for the interface and not unduly restrictive.

SOFTWARE ENGINEERING PRINCIPLES 12-49

14-25 July 1980

- 4 -, --. ..

SEC. 12 I MESSAGE PROCESSING (MP) SYSTEM

Description of the MP Abstract Interface Module

Figure 1 shows how an abstract interface module is used in the MP system.
The applications programs in node A construct a message by calling SET
functions provided by the MP abstract interface module. The abstract
interface programs in node A arrange the fields in the correct order,
duplicate fields that appear more than once in the message, insert control
characters, etc. After the message has been transmitted to node B, the
abstract interface programs in node B extract the fields from the stream of
characters received over the communications line. Node B applications
programs can read fields in the message by calling GET functions provided by
the abstract interface module.

Figure 1: Flow of Information Between HP Modes

Node A of MP System -- Node B of MP System --
Creates Message Receives Message

ABSTRACT INTER- ABSTRACT INTER-
FACE MODULE FACE MODULE

Applications Message External External Message Applications
Programs Holder Interface Interface Holder Programs

Programs Programs Communications Programs Programs
line

SET Store GET Extract Store GET
fields fields 'fields; informa- fields fields

format tion;
message SET

Ifields
" - 4

12-50 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

MP Abstract Interface Module / Doc. MP.6

As shown in figure 2, the two applications programs can be written as if

they could exchange information directly; the fact that the information must
be formatted into AUTONOYS messages, sent over a communications line, and
extracted from the message is hidden from them.

Figure 2: Message Comnunication as it Appears to Applications Programs

Applications Applications
Programs at SET GET Programs at

INode A: fields fields Node B:
Create Message Receive Message

The same abstract interface module is used to format and extract
information, since both activities need the same secret; i.e., the message
format. This module contains two submodules: the message holder (MH) and
external interface (E). Both submodules are described in the paper about the
improved MP module structure (MP.4).

SOFTWARE ENGINEERING PRINCIPLES 12-51
14-25 July 1980

SEC. 12 / MESSAGE PROCESSING (mp) SysTEM

Semantic Information in the Assumption List

Semantic knowledge about messages should be an agreement between the
applications programs that put information into the message and the
applications programs that take information out of the message. However, the
semantics of the message are of no concern to the implementor of the abstract
interface module; he should not infer any additional assumptions by believing
he understands message semantics. Therefore there should be two assumption
lists, a semantic list for the applications programs, and a syntactic list for
both the abstract interface module and the applications programs. For
example, the following assumption is not a proper assumption for the
implementor to make, even though it must appear in the semantic list:
"Messages may contain declassification information that indicates when the
message should be downgraded." The fact that the declassification information
states when the message should be downgraded 4-s not a concern of the abstract
interface module implementor; he need only know whether his module needs to
enforce any restrictions on the declassification values. Leaving the
semantics out of the assumption list for implementors will discourage them
from inferring such assumptions as:

declassification information is represented as dates
and all such dates will be future dates.

However, if it is a requirement that the interface module verify that all
declassification dates are in the future, then the above assumption should be
explicitly included in the assumption list for the implementor.

Semantic information should be included in a separate assumption list
meant only for the applications programs; this list defines terms, relates the
assumptions to the environment of the applications programs, and shows how
each field should be interpreted. The semantic assumption list is omitted
from this document.

12-5 2 SOFTWIARE ENGINEERING PRINCIPLZS
14-25i

MP Abstract Interface Module / Doc. MP.6

Use of Data Types to Simplify Specifications

To specify functions provided by a module, it is often necessary to place
restrictions on the variables that are passed as parameters or returned by
functions. We define a set of data types in order to express these restric-
tions concisely and precisely. By associating each value function and function
parameter with a data type, we can define the set of legal and meaningful
function calls in a simple and compact manner. For example, the MP abstract
interface specifications refer to variables that have the data type time.
Restrictions on variables of type time are defined in one place; all variables
of type time that are passed as parameters or returned by functions must
conform to these restrictions.

If the module is implemented in a modern programming language with
user-defined data types, data types used in the specifications can also be
used in programs so that the programmer can take advantage of type-checking
capabilities in the compiler. If we use a more conventional language such as
FORTRAN, we can rely on the programmers or we can provide type-checking by
means of preprocessing and/or run-time checking with calls to error routines.
The use of data type references in specifications does not imply an
implementation requirement.

The data type definitions must provide a way for the applications programs
to create and refer to variables of specific types. These are simple for
conventional data types: character strings are represented by strings of
characters and integers by integers. For more ncvel data types like date and
time, we provide functions that convert integers or character strings into
variables of these types.

The three functions in figure 3 are provided to create date and time
variables from integers and strings. Note that two date conversion functions
are provided; if the parameters represent the same date, the two date
functions produce variables with the same value. Thus a date variable
representing July 4, 1976 can be produced by either calling JULIAN (76, 186)
or by calling DAYMOYR (4, July, 76).

SOFTWARE ENGINEERING PRINCIPLES 12-53
14-25 July 1980

SEC. 12/ MESSAGE PROCESSING (MP) SYSTEM

Figure 3: Data Type Function Specifications

FUNCTION CALLING FORM: JULIAN (year, day)

INPUT PARAMETERS:

Name Type Description

year integer year in the 20th century

day integer day in year

FUNCTION VALUE TYPE: date

FUNCTION VALUE: date represented by the two input parameters

FUNCTION CALLING FORM: DAYMOYR (day, month, year)

INPUT PARAMETERS:

Name Type Description

day integer day in month

month string name of month

year integer year in 20th century

FUNCTION VALUE TYPE: date

FUNCTION VALUE: date represented by the three input parameters

FUNCTION CALLING FORM: CLOCK24 (hour, min)

INPUT PARAMETERS:

Name Type Description

hour integer hour of day in 24-hour clock

min integer minutes after the hour

FUNCTION VALUE TYPE: time

FUNCTION VALUE: time represented by the two input parameters

12-54 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

L _- ----

MP Abstract Interface Module /Doc. MP.6

The table below lists the data types used in the abstract interface
specifications that follow.

Type Meaning Example

integer a conventional integer 3

boolean variable which can take TRUE, FALSE

two values: TRUE and FALSE

character an alphanumeric character c, x, z, I, p

time variable from which hour, CLOCK24(13,15)
minute can be determined

date variable from which day, month JULIAN(76,186)
and year can be determined DAYMOYR(4,JULY,76)

string string of characters birthday_message,
congratulations,

please send money

ARchar single character, two legal A, R
values: A and R

SOFTWARE ENGINEERING PRINCIPLES 12-55
14-25 July 1980

SEC. 12 / MESSAGE PROCESSING (MP) SYSTEM

MP ABSTRACT INTERFACE MODULE: ASSUMPTION LIST

In the assumption list that follows, various parameters are used in order

to defer decisions that are better made during implementation or at system
generation time. These parameters characterize the message holder in a

particular node of the MP system; the parameters may take different values in
different nodes. These parameters are:

MAXmsg the maximum possible number of messages in the
message holder

MAXline the maximum number of lines in a message

MAXchar the maximum number of characters in one line of a
message

MAXaddressee the maximum number of addressees in a message

MAXto list the maximum number of addressees that the message
may contain in a TO line

MAXinfo list the maximum number of addressees that the message
may contain in an INFO line

MAXxmt list the maximum number of addressees that the message

may contain in an XMT line

12-56 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

MP Abstract Interface Module / Doc. MP.6

K ASSUMPTIONS
I. The message holder can contain both received messages and created

messages. Received messages arrived over the communications line;
created messages are being contructed at this node. It will be
possible to distinguish between them. (A node may transmit a message

to itself; the message will be treated as if it were received. The
created version of the message will also be accessible until it is
destroyed (see assumption 5).)

2. After starting to create a message and before the message is
destroyed, other messages may be created or received. There will be
a maximum of MAXmsg messages in the message holder at a time.

3. Information in received messages cannot be altered (only GET
functions are permitted).

4. Information in created messages may be read or written (both GET and
SET functions are permitted).

5. Message information is accessible until the message holder module is
given a command to destroy the message. (The message holder makes no
assumptions about how long to retain messages or whether to delete
messages when they are transmitted.)

6. Received message information is not accessible from the message
holder until the message holder is given a name to associate with the
message. The message holder indicates whether or not there are any
received messages waiting to be named.

7. Each message contains at most MAXline number of lines.

8. Each message line has at most MAchar items of type character.

SOFTWARE ENGINEERING PRINCIPLES 12-57
14-25 July 1980

SEC. 12 / MESSAGE PROCESSING (MP) SYSTEM

9. The following information may be found or placed in a message.

Item name Number in completed message Type

addressee at least one string

at most MAXaddressee

origin-route_part exactly one string

channel id exactly one integer

precedence exactly one string

originmedia exactly one string

dest media exactly one string

classification exactly one string

content-action exactly one string

sender_orig_route exactly one string

serial exactly one integer

datereceived exactly one date

time-received exactly one time

addressee-route exactly one string

to list at least one string

at most MAXto list

infolist at most MAXinfo list string

xmt_list at most MAXmt_list string

subjectcode exactly one string

text exactly one string

originator exactly one string

12-58 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Maw_______ __

MP Abstract Interface Module /Doc. MP.6

MP ABSTRACT INTERFACE MODULE: FUNCTION SPECIFICATIONS

This section specifies the functions provided by the MP abstract interface
module. The function specifications will require alteration if the assumption
list is changed.

Undesired events are handled in the following specifications via function
calls to user-supplied trap routines. The function names suggest the nature
of the undesired event that occurred. This mechanism allows us to delay
specifying the action that should be taken in exceptional circumstances.

FUNCTION CALLING FORM: GET NUMBEROF MESSAGES MODULE: MH

INPUT PARAMETERS: None

FUNCTION VALUE TYPE: integer

FUNCTION VALUE: Number of messages currently in the message holder. This
number is at most MAXmsg.

INITIAL VALUE: 0

EFFECTS: None

FUNCTION CALLING FORM: ISCREATEDSTATUS(msg) MODULE: MH

INPUT PARAMETERS:

Name Type Description

msg string an identifier associated with a message

FUNCTION VALUE TYPE: boolean

FUNCTION VALUE: TRUE if msg is a created message; FALSE if msg is a received
message

EFFECTS: If msg is not associated with a message in the message holder then

LE NO MSG is called.

SOFTWARE ENGINEERING PRINCIPLES 12-59
14-25 July 1980

-- 4 -. -- ____mm_,n

SEC. 12 / MESSAGE PROCESSING (MP) SYSTEM

FUNCTION CALLING FORM: CREATE(msg) MODULE: MH

INPUT PARAMETERS:

Name Type Description

msg string an identifier to be associated with the newly
created message

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: If GETNUMBEROFMESSAGES - MAXmsg then UETOOMANYMSG is
called.

Otherwise, a new message is created and associated with the string
msg. GET NUMBERCF MESSAGES is incremented by 1.
ISCREATED_STATUS(msg)= TRUE

FUNCTION CALLING FORM: IS WAITING MESSAGE MODULE: MH

INPUT PARAMETERS: None

FUNCTION VALUE TYPE: boolean

FUNCTION VALUE: TRUE if any messages have been received but not named.
FALSE if no messages are waiting to be named.

EFFECTS: None

12-60 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

- _ _ _ - ;!

MP Abstract Interface Module / Doc. MP.6

4
FUNCTION CALLING FORM: NAMEMESSAGE(msg) MODULE: MH

INPUT PARAMETERS:

Name Type Description

msg string an identifier to be associated with the newly
received message

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: If GET NUMBEROF MESSAGES a MAXmsg then UE TOO MANY MSG is

called. If IS WAITINGMESSAGE = FALSE then UE NOWAITING MESSAGE
is called

Otherwise, a received message is associated with the name msg.

GET NUMBEROF MESSAGES is incremented by 1.
IS _REATED STATUS (msg)=FALSE

FUNCTION CALLING FORM: DESTROY(msg) MODULE: MR

INPUT PARAMETERS:

Name Type Description

msg string the identifier of a message in the message holder

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: If msg is not associated with a message in the message holder then
UENOMSG is called.

Otherwise, msg is no longer associated with a message in the
message holder. GETNUMBEROF MESSAGES is decremented by 1.

SOFTWARE ENGINEERING PRINCIPLES 12-61
14-25 July 1980

SEC. 12 I MESSAGE PROCESSING (MP) SYSTEM

The notation GET @ and SET @ denotes a set of functions where each string
in the following list may be substituted for @ to obtain a particular
function. Additionally, the parameter type for each function may differ
depending on the value of @. These differences are indicated in the #-type
list below.

In the following function specifications substitute the following values

for @ and #. Whenever @ is used and a # symbol appears in the specification,
substitute the corresponding type. For example, in SET @(msg,parm) if @ is
SERIAL then # is integer; the resulting function is SET-SERIAL(msg,parm) and
parm must be an integer.

@_ #-type

ORIGINROUTEPART string

CHANNELID integer

PRECEDENCE string

ORIGINMEDIA string

DEST MEDIA string

CLASSIFICATION string

CONTENTACTION string

SENDERORIGROUTE string

SERIAL integer

DATE CREATED date

TIME CREATED time

ADDRESSEEROUTE string

SUBJECT-CODE string

TEXT string

ORIGINATOR string

12-62 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

_ _ _ _ _ _ _ _ _ _ _ _ - - - - - -- - 7

MP Abstract Interface Module /Doc. MP.6

FUNCTION CALLING FORM: SET.@(msg,parm) MODULE: MH

INPUT PARAMETERS:

Name Type Description

msg string the identifier of a message in the message holder

parm # the item to be stored in the @-field of mag

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: If msg is not associated with any message in the message holder,
then UE NO MSG is called. If ISCREATEDSTATUS(msg) - false, then
UEGET ACCESSONLY is called.

Otherwise, the @-field of msg is set to parm. If the @-field has
previously been set then the @-field is overwritten with the new
value.

FUNCTION CALLING FORM: GET.@(msg) MODULE: MH

INPUT PARAMETERS:

Name Type Description

msg string the identifier of a message in the message holder

FUNCTION VALUE TYPE: #

FUNCTION VALUE: the @-field of the message associated with msg

EFFECTS: If msg is not associated with a message in the message holder then
UENO..MSG is called. If this field has not been set in the message
associated with msg then UENO_@ is called.

--

SOFTWARE ENGINEERING PRINCIPLES 12-63
14-25 July 1980

SEC. 12 / MESSAGE PROCESSING (MP) SYSTEM

In the following function specifications substitute the following values
for $. Each list contains up to MAX$ pairs of variables; one variable is
the routing indicator, the other an addressee identifier.

INFO LIST

XMTLIST

TO LIST

FUNCTION CALLING FORM: GETNUMBEROF_$(msg) MODULE: MH

INPUT PARAMETERS:

Name Type Description

msg string the identifier of a message in the message holder

FUNCTION VALUE TYPE: integer

FUNCTION VALUE: the number of $-list pairs in msg. This number is at most
,AX$.

EFFECTS: If msg is not associated with a message in the message holder, then
UENOMSG is called

12-64 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

IN

MP Abstract Interface Module /Doc. MP.6

FUNCTION CALLING FORM: SET_$(msg,route,addressee) MODULE: MH

INPUT PARAMETERS:

Name Type Description

msg string the identifier of a message in the mesage holder

route string the routing indicator to be stored in the next $
pair of the message

addressee string the addressee identifier to be stored in the next
$ pair of the message

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: If msg is not associated with any message in the message holder,

then UENOMSG is called. If ISCREATEDSTATUS(msg)=FALSE, then
UEGET ACCESS ONLY is called. If GETNUMBEROF_$(msg) - MAX$,
then UE_TOO_MNY_$ is called.

Otherwise, route and addressee are set in a pair appended to the
contents of the $-field of msg and GET NUMBEROF $(msg) is
incremented. If there were no previous items in the S-field, then
this pair is the first.

SOFTWARE ENGINEERING PRINCIPLES 12-65
14-25 July 1980

f-A

SEC. 12 / MESSAGE PROCESSING (MP) SYSTEM

FUNCTION CALLING FORM: GET $(msg,infotype,i) MODULE: MH

INPUT PARAMETERS:

Name Type Description

msg string the identifier of a message in the message holder

infotype ARchar whether addressee or rotte component of the pair

i integer the number of the pair in S-list

FUNCTION VALUE TYPE: string

FUNCTION VALUE: if infotype - A then the ith addressee in the $-list
if infotype w R then the ith route in the S-list

EFFECTS: If msg is not associated with any message in the message holder,
then UE_NOMSG is called. If i It 0 or i gt GETNUMBEROF_$(msg),
then UE_BAD_$_NO is called.

------------------ --

12-66 SOFTWARE ENGINEERING PRINCIP'iES
14-25 July 1980

7 7I

I
I

CA

CA

fyi

0CA

*1A r

MADDS. 1 The Military Address System (MADDS)

EXAMPLE DESCRIPTION

Motivation

Many organizations maintain lists of names and postal addresses in a

computer. In simple applications, the whole list is used to generate a set of
mailing labels or "personalized" letters. In other appl .Ations, a subset of
the list is selected according to criteria believed to ia 1tify individuals
most likely to be interested in the contents of the mailin . For example, a
publisher who wished to offer a new magazine called Tax iCopholes might want

to select addresses for people with medical degrees. Others might want to
select all persons within a particular geographic area (consider a magazine
like Southern Living, for example), while still others might be interested in
persons with specific first or last names.

The address lists can be obtained from various sources, such as magazine

subscription departments, and are generally delivered on a medium such as
magnetic tape. Data from different sources are likely to appear in different
record formats.

The task for any software system that processei such a list is to read the
input data (in a specified, but likely-to-change, format), extract the desired
subset of the list according to certain criteria (which are specified, but

likely to change), and print that subset (also in a specified, but
likely-to-change, format).

A general mailing-list-processing system is an eixample of am embedded

system; that is, one which is subject to arbitrarily changing constraints,
outside the designer 's control. The input format is determined by the
designers of the system that produced th- tape, and the output format is
considerably constrained by the requirements of the postal system in which the
mail will be deposited.

The Assignment

You will each be constructing parts of a simplified version of such an
address processing system. The system will be able to search for and print
the iddresses within a certain ZIP-code area, and to do the same for the
addresses with a certain 0--grade. (An O-grade is a numerical representation
of an officer's rank; it is further explained in MADDS.5.) Even though the
resulting system will be simple by comparison with its real-world
counterparts, it is important to understand that the principles outlined in
this course still apply. There are four steps to the assignment.

SOFTWARE ENGINEERING PRINCIPLES 13-1
14-25 July 1980

47

SEC. 13/ MILITARY ADDRESS SYSTEM (MADDS)

1. The first step is an exercise for you to identify the moduleL of the

Military Address System (MADDS). MADDS has the three external interfaces
pictured below:

User I IADDS Mailing

System

Address lis
generator

The following table lists the inputs to MADDS and outputs from MADDS for
each MADDS interface:

Interface Inputs Outputs

Human user Request to run rank UE message
and area applicatians

Address list generator Address list

Mailing system tess labels

The request to run the application does not specify the order in which to
create the output. That is, it does not request that the O-grade application
be run first, and then the ZIP code application, or vice versa. Nor does it
imply that the two applications are in fact separate tasks. That is an
implementation detail that is subject to change. The format of the input
address list is also an implementation specific that varies between family
members, as is the format of the output addresses.

2. After the exercise, you will be given a set of informal interfa-
specifications for the MADDS modules identified by us. You will study these
specifications and satisfy yourself that they are complete. All questions
should be resolved before you continue.

3. The class will be divided into two-person teams (although you may work
alone if you wish). Each team will be assigned the responsibility of imple-
menting one of the modules of the system, as defined in its interface
specifications. Implementation information and documentation concerning the
local programing environment will be distributed.

13-2 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

"-Ir -"1",: A __ .,.:. -. -'r nn lmr " '" " ' "- "= ' ':' "a "" a INA

The Military Address System (MADDS) /Doc. HADDS.I

4. Finished modules will be chosen in various combinations to create a

running MADDS system, demonstrating the value of carefully chosen and properly
specified modules. In addition, two different input formats and two different
output formats will be specified, and different HADDS family members will be
constructed using the different input and output modules. This will
demonstrate the value of using information-hiding modules to isolate change.

SOFTWARE ENGINEERING PRINCIPLES 13-3
14-25 July 1980

MADDS.2 MADDS Modular Structure

EXERCISE

Name:

Consider the Military Address System described in MADDS.1. Identify the
main modules of the system and describe the information that each module hides.

Module Name Secret

SOFTWARE ENGINEERING PRINCIPLES 13-5
14-25 July 1980

4- . .. -- , -----. ~--

MADDS.3 MADDS Modular Structure

EXERCISE SOLUTION

The system consists of nine modules. In addition, there is an undesired

event handler.

Module Name Secret

Applications Program Module (APM) The APM consists of all applications
programs, that is, all programs that

perform end-user specified operations on a
database of addresses. There are at least

two applications programs. One finds and
outputs addresses "7ith a specific ZIP-code
area. Another outputs addresses with
O-grade level less than or equal to a

specific value. The APM hides selection
algorithms and the order of address entries
output.

Address Storage Module (ASM) The ASM consists of all address storage and
retrieval routines. It hides the structure
used to store addresses.

Character Module (CHM) The CHM consists of all character
manipulation routines. It hides the
internal representation of characters.

Input Device Module (IDM) The IDM consists of all routines that
communicate directly with the physical

input device. It hides knowledge of the
type of device, the device's representation
of characters, the length of input lines,

and the protocol used to read input from
the device.

Input Module (IPM) The IPM analyzes the input data and stores

the addresses for the ASM. It hides the
format (e.g., number, order, and length of

the fields) of the input.

SOFTWARE ENGINEERING PRINCIPLES 13-7

14-25 July 1980

4.- ------ ...

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

Output Device Module (ODM) The ODM consist of all routines that
communicate directly with the physical
output device. It hides knowledge of the
type of device, the device's representation
of characters, the length of output lines,
and the protocol used to write output to
the device.

Output Module (OPM) The OPM determines the format in which the
address entries are to be output. It
hides, for example, order of fields as well
as number and content of output lines.

String Storage Module (SSM) The SSM consists of all string manipulation
routines. It hides the internal representa-
tion of strings.

Master Control Module (MCM) The MCM determines the sequence in which
applications programs and other programs
will be called. Its secret is the way that

the functions of other modules are put
together to perform useful tasks.

Undesired Event Handler (UEH) The UEH is a collection of UE handling

functions that any module can use to report
a UE.

13-8 SOFTWARE ENGINEERING PRINCIPLES

14-25 July 1980

MADDS.4 Using the Computer System

LECTURE

1. INTRODUCTION

During the MADDS exercise, you will be using the Academic Computing
Center (ACC) of the United States Naval Academy. The ACC uses the Dartmouth
Time Sharing System (DTSS) operating on a Honeywell 6000 computer. DTSS is
tailored to support time sharing and to provide a single user interface that
facilitates easy on-line program development and testing. The purpose of this
MADDS document is to provide you with sufficient information to use DTSS in
the MADDS assignment. As such, it does not describe all of the capabilities
available to you on DTSS. If you feel that additional capabilities would help
you in the exercise, or if you have sufficient time and an interest in
experimenting with the system, refer to your ACC Computer Primer.

2. LOGGING ON/AND OFF

The first step in using DTSS is to "log on." Your instructor will give
each of you a user number and a password. To connect to the computer, turn
your terminal on and press the RETURN key ® twice. The system will respond

with a greeting message such ast

USNA/DTSS TIME-SHARING
LINE 0/0013 ON AT 14:21 23 JUN 80
USER NUMBER - -

In response to the user number prompt, you must enter your six--haracter
user number. If you enter the wrong number, the system will repeat the prompt
until you get it right.

Once an acceptable user number has been entered, the system will prompt
for a password. You must then enter your password. The password will not be
displayed.

When a valid password is entered the system will respond with

READY

To "log off," just type

BYE t

You will now be disconnectea from the system.

SOFTWARE ENGINEERING PRINCIPLES 13-9

14-25 July 1980

-"OKI

SEC. 1.3 / MILITARY ADDRESS SYSTEM (MADDS)

3. CREATING FILES

If you want to create and save your own files, you need only learn a few
commands. It is very easy to create an empty new file. Whenever the system
is ready to listen to a command (e.g., it has just said READY), you may type
NEW, a space, and then a name for the file. The name may be from one to eight
characters long and contain letters, digits, periods [.1, or hyphens [-I. A
space may not be part of the file name. For example, to create a file named
WRITERS, type:

NEW WRITERS®

Now that you have a file, you probably would like to put something in
it. You may do this in several different ways. The easiest way is to start
typing lines that begin with numbers. These numbers are called line numbers
and are used to keep your file in order. If you want to put a list of
newspaper columnists into the empty file, you can type:

100 JACK ANDERSEN (®
110 JAMES KILPATRICK
120 ABIGAIL VAN BUREN U

Suppose that you had intended to put the name ART BUCHWALD between the
first and second lines. To do this, you just have to type a line beginning
with a number between 100 and 110. For instance:

104 ART BUCHWALD (tu

To see what you have in your file, type:

LIST /-

The following will be printed on your terminal:

100 JACK ANDERSEN
104 ART BUCHWALD
110 JAMES KILPATRICK
120 ABIGAIL VAN BUREN

You will note that the computer automatically sorts your file by line
number. In this example, line numbers were not entered consecutively.
Therefore, it will be easy to insert new lines in the future. Any integer
increment between line numbers may be used, and the numbers may start
anywhere. It is good not to use line numbers with more than five digits,
sinc~e they are not allowed by many programming language translators.

If you have been trying out the examples on a terminal, you now have a
"prr" file with the name WRITERS. If you signed off from the computer
now and signed on again just an instant later, there would be no trace of what

13-10 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Using the Computer System / Doc. MADDS.4

was in the file, or even that it ever existed. Likewise, if you typed another
NEW coummand or an OLD command, the file which you created then would
disappear. To keep the file available for future use, you must make a
"1permanent" copy of it by using the SAVE command:

SAVE e-

To retrieve a copy of a file you have saved, type OLD, a space, the name
of the file, and then press RETURN. For example, if you work with another
file after you finish with WRITERS, and you wish to retrieve WRITERS, type:

OLD WRITERS ti®

WRITERS now becomes the "current" file. Since few of us type without
ever making a mistake, there are several ways of correcting errors on
USNA/DTSS. You can make the computer "forget" the previous character on the
line you are typing by pressing the CONTROL and Z keys simultaneously, and the
whole line you are typing can be "forgotten" by pressing CONTROL and X
simultaneously. Once you push the RETURN key, however, these methods are
useless for the line you just entered, since they operate only on the line
which you are currently entering. One easy way to correct a line in the file
is simply to retype it, using the same line number. In the example above, the
name JACK ANDERSON is misspelled. If you have been working with the examples
at a terminal, you can correct that line by typing:

100 JACK ANDERSON r'

Sometimes, you may wish to delete a line from your file. You can do so
by typing the line number immediately followed by RETURN. For example, to
delete the line with the name JAMES KILPATRICK, you type:

110 -*

A word of caution is due here. If you wish to insert a "blank" line in
your file, do not type a line number immediately followed by RETURN. Instead,
type a space after the line number and then RETURN.

The changes you have typed since you told the computer to SAVE your file
are only made to a temporary copy of your file. In order to preserve the
corrected copy, use the REPLACE command:

REPLACE

The SAVE command is only used the first time a file is saved. Any later
additions or changes to the file are preserved with the REPLACE conmmand. If

1j you type SAVE, and there is already a file saved with the name you have given

your file (via NEW or OLD), the computer will tell you that the file is
already saved. This precautionary message protects you from accidentally
destroying a different file with the same name. If you receive this message,
you should either type REPLACE or RENAME your file and SAVE it. If you type

SOFTWARE ENGINEERING PRINCIPLES 13-11
14-25 July 1980

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

REPLACE without previously having SAVED your file, the computer will tell you
that the file is not saved. If this happens, use the SAVE command.

4. LINE NUMBERING YOUR FILE AFTER EDITING

If you make any changes (insertions, deletions, etc.) to your file, you
should re-line-number the new file by typing:

EDI RES ®

It is advisable to resequence your file every time you edit it. This
will ensure that a properly numbered program is used when you compile and run.

5. MODIFYING AN EXISTING FILE

5.1 General Conventions

If you wish to make changes to a permanent file stored on the system you

may do so by using the QED editor available under USNA/DTSS. Each of QED's

editing commands will be explained later. There are, however, a few
conventions that will hold for all commands.

First, the file to be edited should be made the current file by typing

OLD (filename). Type QED to use the QED editor. QED responds with its prompt
character, a left parenthesis [(I, which is your cue that QED is ready to
accept commands from the terminal. Commands and text lines are stored
temporarily in an input buffer until an empty line (two carriage returns in
immediate succession) is received; only then does QED begin processing the
commands. Thus, to signal QED to process a group of lines, press the RETURN

key twice. Lines are then processed, and QED requests more input by typing (.

Commands operate on a copy of the current file. When editing has been
completed, type the exit command [E] to terminate QED and press the RETURN key
twice. The edited version becomes the current file, and you can make
modifications permanent by typing SAVE or REPLACE. If QED is aborted, the

current file is nct changed.

The following example demonstrates the QED entrance and exit procedure.
In the example. and throughout this guide, information printed by the system
will be denoted with an underscore. Information that you must enter will not

be underscored. Also throughout the guide, the angle brackets signify a
variable quantity that you must fill in with an actual value; hence, angle

brackets should never be actually typed.

old <filename) ®
READY
qed
((qed commands) ®!e® ®
READY
replace ®
READY

13-12 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

66w

Using the Computer System I Doc. MADDS.4

A5.2 Command Format; A Simple Command

The general form of a QED command is as follows:

(line specification) (command)

where (line specification) specifies a line or group of lines which is to be
operated upon. (Command> denotes the operation to be performed. All QED
commands are specified by a single letter, which may be typed in upper- or
lowercase.

In this first section we will use the print command [P], in addition to
the exit coimmand [E], to facilitate our discussion of QED conventions. The P
prints at the terminal the line(s) specified in the command. The user may
specify particular lines in two different ways, which we will now discuss.

5.3 Line Addressing

A line is identified by its position in the file, not by any line number
that may appear in the line. The position of a line is determined by counting
lines. (QED counts a new line after each line feed, even if the line feed is
not part of a normal carriage return-line feed sequence.)

(line specification) may be of the form (line #1), (line #2), which
denotes the first and last lines of the group to be operated on. For example,
the command 3,5P prints the third through the fifth lines of the file. ((Line
#1) should precede (line #2) in the file; if this is not the case, the error
message "Address wraparound" is printed.)

If the command is to operate on a single line rather than a group of
lines, omit the comma and (line #2). Typing 3P prints the third line of the
file.

If no address is given, the current line is acted upon; after each
command, one line, generally the last line processed, becomes the current
line. The current line may be represented by a period [.3. For example, if
the second line has just been printed (and is therefore the new current line),
then .,4P prints the second, third, and fourth lines. Subsequently, the
fourth line is the new current line. The last line of the file is represented
by the dollar sign [$1. Thus, 1,$P prints the entire file and causes the last
line to become the current line.

A numerical line offset may be used in an address so that a line can be
specified by counting backward or forward from the current line. A minus sign
[-] signifies lines which precede the current line; a plus sign [4] denotes
lines which follow the current line. Typing .,.+3P prints the current line
and three lines immediately following that line. (Note that the "fourth" line
becomes the new current line.) Typing .-3,.P prints the preceding three lines
and the current line.

SOFTWARE ENGINEERING PRINCIPLES 13-13
14-25 July 1980

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

You may also use a numerical line offset to count backward from the last
line in the file. Typing $-IP prints the next to the last line in the file.

Examples of the use of line addressing follow. These examples, as do
other examples in this manual, assume the following ten-line file (called
COUNT). (Note that each set of examples starts with this original file;
changes made in previous examples are ignored.) In this example the command
1,$P is used to list the entire file. Remember that you enter an empty line
to signal QED to process any commands which have been entered.

qed S
(1,$p ® ®
one
two
three
four
five
six
seven
eight
nine
ten
(e®

READY

13-14 SOFTWARE ENGINEERING PRINCIPLES

14-25 July 1980

V7ZM

Using the Computer System /Doc. MADDS.4

Line aidressing examples:

qed %

three
r3,4p ® ®
three
four

ten
_-F2p® ®
three

A.® no
three

. Ip ® ®
four

.- Itp ® ®
three
(.- i,.+ip ® ®
two
three
four

t,$p® ®
eight
nine
ten

READY

5.4 Content Addressing

A string is a sequence of characters. You can address a line in a QED
command by specifying a unique string of characters that is contained in the
desired line, commonly called a search string. QED locates a line which
contains the string, thus establishing the address for the command, which is
then executed. The string may be up to 256 characters long. Upper- and
lowercase letters are distinct characters.

It is important that the beginning and end of the search string be
identified, so that it is kept separate from the rest of the command. Slashes
(/1 should be used as delimiters and should immediately precede and follow the
search string. For example /STA/ would search for the first occurrence of a
line containing the string STA.

QED searches for the string in a circular fashion, beginning with the
line after the current line, continuing to the end of the file, returning to
the first line, and continuing back to the current line. When QED is entered,
the current line is the first line of the file; thus a search would start with

SOFTWARE ENGINEERING PRINCIPLES 13-15
14-25 July 1980

SEC. 13 /MILITARY ADDRESS SYSTEM (HADDS)

the second line, go through the file to the last line (if the desired string
(has not been found), and then return to the first line. Thus the first line

would be the last line to be searched.

Using Search Strings: Typing /STA/P causes QED to prin~t the next line
from the current line containing the string STA. Several search strings may
be included in one address. QED searches for each string in succession while
forming the complete address. The command line /LDA//STA/P causes QED to
print from the next line containing the string LDA, through the next line
containing the string STA.

You can use your file's line numbers as search strings, for example
/110/P would print the line of your file that you have numbered 110.

5.5 QED Commands

The following seven commands are the most commonly used commands for
manipulating fi~es with the QED editor. Except for %K. each command is a
single upper- or lowercase character.

Command Function

P Print line(s)
S Substitute one string for another
D Delete line(s)
A Append line(s) after a specified line
E Exit QED

- Print the ordinal position number for the current line
%K Kill this command sequence

I Insert..

5.5.' Print [P]. The command (line specification) P displays the line(s)
defined by (line specification). If (line specification) is omitted, the
current line is printed. The new current line is the last line printed.

5.5.2 Substitute [S]. To alter parts of lines, the substitute command is
used. Its format is:

(line specification) S/ (fir~st string) / (second string)/

Note that only one delimiter separates the two strings. String
delimiters for the substitute command follow the same rules as for search
strings used in content addressing (see "Content Addressing").

All occurrences of the search string (first string) in line group
defined by (line specification) are replaced by (second string>. After each
substitution the search continues with the first unchanged character. If
(first string) is empty (i.e., //), the previously typed search string is
used. If (second string) is null, (first string) is removed from the
specified lines, and the current search string remains (first string>.

13-16 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

- ___________________-OWN"_

Using the Computer System /Doc. MADDS.4

With the substitute command, ampersands [&] may be used within the
second string to represent the first string. All ampersands in (second
string) signify that (first string> is to be inserted at that point. For
example, the command /LDA/S//&Q/ changes each LDA in the next line containing
that string to LDAQ.

Examples of the substitute command follow:

qed @
(2s/two/2/p ® ®
2
! .+5s/e/E/p ® ®
sEvEn
(/2/s//two/p ® ®
two

(.$s/E/e/7p ® O
seven
-(/six/s//&teen/p (
sixteen
(s/teen//p ®y ®
six

READY

5.5.3 Delete [D]. Lines to be deleted are specified in the same way as lines
to be printed: (line specification) D. After a deletion has been performed,
the first line not deleted (following the lines addressed) becomes the current
line. If the last line [$1 is deleted, then the new last line becomes the
current line. In the following example, the original file COUNT is modified:

qed @
C 2 ,5p ® ®
-two
three
four
five

five
2---3 p ®

two
five

READY

SOFTWARE ENGINEERING PRINCIPLES 13-17

14-25 July 1980

-. - :

SEC. 13 / MILITARY ADDRESS SYSTEM MDDS)

The current file now contains:

one
two
five
six
seven
eight
nine
ten

5.5.4 Append (A]. To add lines after a specified line, type:

(line specification) A
(new lines>
%E

The characters which appear between the command A and %E are placed
after the line line specification in the file. If the first characters
after the A are a carriage return-line feed pair, then they are ignored. Any
number of lines may be appended. The last line appended becomes the current
line. If the 'Line address is omitted, then the current line is assumed.

Warning: The %E must be typed in order to terminate QED's input mode.
If it is omitted, all information (including coimmand lines) typed thereafter
will be appended until receipt of a %E; no further commands will be processed
until the %E has been typed.

If you push RETURN twice without typing %E, QED will type) as a prompt,
instead of the usual (. This is to remind you that you are still entering
lines of text.

The file COUNT is modified in the following example:

qed Q
(2A®S
tEwo. five®
two, Six
%e2,5p
two
two. five
two. six
three

READY

13-18 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Using the Computer System /Doc. MADDS.4

The resulting current file is:

one
two
two. five
two. six
three
four
five
six
seven
eight
nine
ten

5.5.5 Exit (E]. When the exit command is processed, QED replaces the current

file with the edited version and terminates. (Remember to type SAVE or
REPLACE after you exit from QED in order to keep the edited version.)

The exit command must be the last character on a line.

5.5.6 Equal [=]. The command <line specification> = prints the line number

of (line specification). This line number is the number corresponding to the
ordinal position of the line in the file, not a program-related line number.

The line number of the first line in a file, for example, is 1. QED counts a
new line after each line feed or carriage return (with associated line feed)
that occurs in the file. Note that the number will change if lines are added
or deleted before (line specification).

Following are examples of the equal command:

qed @
(Ifivel ®

10
C 2d/five/ ® ®

(2p~ t(O
three

READY

5.5.7 Kill [%KJ. If %K is the last thing typed to QED before the double

carriage return which tells QED to start processing commands, then all input
since the last double carriage return is ignored. This lets you delete
erroneous command lines which you have discovered before requesting exec ticn.

SOFTWARE ENGINEERING PRINCIPLES 13-19

14-25 July 1980

SEC. 13 / MILITARY ADDR-SS SYSTEM (MADDS)

5.5.8 Insert [I]. The insert command has the following format:

(line specification) I

(new lines)
%E

Insert is the same as append, except that the lines between the command
I and %E are placed before (line specification). If the line address is
omitted, then the lines are inserted before the current line. The last line
inserted becomes the current line. 1I inserts lines at the beginning of the
file, while $A adds lines to the end. (See "Append" and the note on the
importance of %E.) Examples of the insert command follow, using the ten-line
file COUNT.

qed ®

zero
%e R G

1 ,2p ® ®
zero
one
(/five/i ®
four. five

(-,.+lp ® ®
four.five

five(R®
READY

5.5.9 Change [C]. The format of the changt command is:

K line specification) C
(new lines)
%E

Change is the same as append and insert, except that it replaces the
line group given with the lines between the command C and %E.

13-20 SOFTWARE ENGINEERING PRINCIPLES

14-25 July 1980

Using the Computer System /Doc. MADDS.4

Following are examples of the change command:

old COUNT ®
READY
qed
(/two/,/four/c ®
two.three.four 3
%el,3p ® ®
one
two. three, four
five(2c®
two
three ®
four
%ep@
four
j 1,5pe ® ®
one
two
three
four
five
READY

6. DEBUGGING YOUR MODULE

The first step in debugging your module should be to attempt to run the

module without linking to other modules of MADDS. To do this you need only
retrieve your current file and type COMPILE F78. The scenario for doing this
is as follows:

OLD (filename ®
READY
COMPILE F78 ®R

The results of this attempt to run will be stored in a file named

".OBJECT.". If your compilation was successful you will receive the message

COMPILATION SUCCESSFUL

If not, errors detected in the compilation attempt will be listed at
your terminal. Each error message will specify the error type and the line
number of your source code at which the error was detected.

When you have successfully compiled your module, you should store the
object code for later use. The object code will be stored in a file named
".OBJECT.". You should rename that file and save it for future execution by
entering the following commands:

SOFTWARE ENGINEERING PRINCIPLES 13-21

14-25 July 1980

II1 _ __ - "_ _- _" _ _'-_...--, --

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

OLD .OBJECT.
READY
RENAME MODULE.OBJ ®
READY
SAVE MODULE.OBJ ®

Where the term MODULE.OBJ should contain the three-character abbreviation

for your module concatenated with .OBJ (e.g., IPM.OBJ, OPM.OBJ, etc.).

6.1 Linking to the Rest of MADDS

To run your module with the rest of MADDS you need to use the INCLUDE

command, as follows:

INCLUDE *(MADDS object file)

INCLUDE *<MADDS data file>

These two lines should be the last two line of your source program. The names

of the data files and object files that you should use are shown in the
implementation notes.

13-22 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Using the Computer System /Doc. MADDS.4

7. SAMPLE DTSS SESSION

" A typical session on the DARTMOUTH TIMESHARING *
" SYSTEM (DTSS) is illustrated below. LINES *
" PRINTED (DISPLAYED) by the system are under- *

* lined. ® indicates a carriage return.*

USNA/DTSS TINE-SHARING

LINE 010013 ON AT 1421 12 JULY 1980

USER NUMBER -- 12345 ®*LOGIN AND ENTER YOUR*
-- PASSWORD S PASSWORD*

READY

CREATE A NEW PROGRAM CALLED CHAREQ

NEW CHAREQ®

READY

10 *CHARACTER EQUALITY TEST
20 * n
30 LOGICAL FUNCTION CHAREQ(CH1,CH2)®
40 CHARACTER*1 CHI, CR2 /--
50 INTEGER MASK, INTC1H.,INT1,INT2,tCHAR @
60 COMMON/CHMBLK/INTCHR(128)
70 INT1] ICHAR (CH1) @~
80 INT2; ICHAR (CR2) 7
90 CHAREQ -INTCHR(INT1+1).EQ.INTCHR(INT2+1)

100 RETURN®
110 END

SAVE THE PROGRAM

SAVE

READY

SOFTWARE ENGINEERING PRINCIPLES 13-23
14-25 July 1980

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

* COMPILE THE PROGRAM *
* ** *** ** *** *** ** ***

COMPILE F78

* THE COMPILER DETECTED *
* THE FOLLOWING ERRORS *

* ** * ********* ***** *

LINE 70, CH3: UNKNOWN STATEMENT
LINE 80V CH3: UNKNOWN STATEMENT
INTEGER VARIABLE (INTI) NEVER ASSIGNED A VALUE, LINE 90INTEGER VARIABLE (INT2) NEVER ASSIGNED A VALUE, LINE 90

STOP

READY

* PRINT THE LINES IN ERROR *
"AWA** * **** 'kW *WW-** W*** *

QED

(/70/p ®
laO/p ®

/90/p n ®
70 INT] ICHAR (CH)
80 INT2; ICHAR (CH2)
90 CHAREQ = INTCHR (INTl + 1).EQ.INTCHR(INT2+1)
************ *** ****'W 'Wk***W' ** ** **

" CORRECT LINES 70 AND 80 *
" USING QED's SUBSTITUTE COMMAND *

Q ED®

_ S/INT1I/INTI=/p ® ®
70 INTl - ICHAR(CHI)

(.+lS/INT2;/INT2-/P ® ®

80 INT2 - ICHAR(CH2)

13-24 SOFTWARE ENGINEERING PRINCIPLES

14-25 July 1980

Using the Computer System /Doc. MADDS.4

* INSERT SOME COMMENTS *
* AT THE TOP OF THE FILE *

!iI®

C TinS PROGRAM COMPARES CHARACTERS; ®
C UPPER AND LOWER CASE CHARACTERS ®
C WILL BE CONSIDERED EQUAL ®

(E ®®

READY

* R-LINE-NUMBER YOUR PROGRAM *
** ** ** *** *** *** **** ***** *

EDI RES ®
READY

* ** *** ***** *** *** ** *** ** ** ** *

* REPLACE YOUR OLD FILE WITH *
* THE NEW ONE THEN LIST IT *
*** **-*** **** ****** ******* *

REPLACE ®

READY

LIST

100 C THIS PROGRAM COMPARES CHARACTERS;
110 C UPPER AND LOWER CASE CHARACTERS
120 C WILL BE CONSIDERED EQUAL
130 *CHARACTER EQUALITY TEST
140 *
150 LOGICAL FUNCTION CHAREQ (CHI, CH2)
160 CHARACTER*I CHI, CH2
170 INTEGER MASK, INTCHR, INTi, INT2, ICHAR
180 COMMON/CHMBLK/INTCHR (128)
190 INTiS ICHAR (CHI)
200 INT2 = ICHAR (CH2)
210 CHAREQ = INTCHR (INT1+1).EQ.INTCHR (INT2+1)
220 RETURN
230 END

READY

SOFTWARE ENGINEERING PRINCIPLES 13-25

14-25 July 1980

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

* ** ** * *** * *

* COMPILE THE NEW PROGRAM *

COMPILE F78 ®

LINE 110 CH3 UNKNOWN STATEMENT
LINE 120 CH3 UNKNOWN STATEMENT
LINE 130 CH3 UNK4OWN STATEMENT

READY

*****************,,****-' ,*************

* THE ERRORS OCCURRED L6CAUSE YOU *
* USED A 'C' INSTEAD OF AN ASTERISK *

* '*' ON YOUR COMMENT LINES *

* CHANGE 'C' TO AN ASTERISK ON THE *

* FIRST COMMENT 'INE, THEN DELETE *
* THE SECOND TWO LINES *

QED ®

(s/c 1* /P® ®
* THIS PROGRAM COMPARES CHARACTERS
C UPPER AND LOWER CASE CHARACTERS
C WILL BE CONSIDERED EQUAL

(2, 3 D Z

(E®®

READY

** ** **** ** ** ***** *** *** *

* RESEQUENCE YOUR FILE *
* ONCE AGAIN *

EDI RES ®
READY

13-26 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

_,

pp- .

Using the Computer System /Doc. MADDS.4

* REPLACE YOUR OLD FILE *
* WITH THE NEW ONE *

**** * * *** ** * *** * ***** ****

REPLACE

READY

* **** ** *** **** ***** **** *

* TRY TO COMPILE AGAIN *
** ******* *** **** *** *** **

COMPILE F78 ®
COMPILATION SUCCESSFUL

YOUR CURRENT FILE IS NOW CALLED ".OBJECT."

READY

* **** *** **** *** *** *** ****** ** ** **

* LINK YOUR SOURCE PROGRAM TO A MADDS *
* FILE CALLED 'U07008:MADEMO' AND A *
* DATA FILE CALLED 'U07008*DATUE' *

OLD CHAREQ ®
READY

* FIND OUT THE LINE NUMBER OF YOUR *
* LAST LINE OF SOURCE CODE *

QED ®
L$P® ®

230 END

SOFTWARE ENGINEERING PRINCIPLES 13-27
14-25 July 1980

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

* USE THE INCLUDE STATEMENT TO LINK TO A MADDS *
* OBJECT FILE AND A MADDS DATA FILE *

$-A®

240 INCLUDE *U07008:MADEMO ®

250 INCLUDE *U07008:DATUE ®

!E®

READY

* RESEQUENCE YOUR PROGRAM O

EDI RES ®
READY

* REPLACE THE OLD VERSION OF CHAREQ*
* W;I7H THE NEW ONE.

REPLACE®

READY

** * ***** *** ** ****

* RUN YOUR PROGRAM *

RUN F78 ®

13-28 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Using the Computer System /Doc. MADDS.4

* DURING EXECUTION, MADDS DETECTED *
* AN UNDESIRED EVENT (UE). THE *

* FOLLOWING MESSAGE WAS GENERATED. *

**THE UE: NO CHARS AVAILABLE ON INPUT DEVICE

DETECTED IN FUNCTION RDCHAR OF MODULE IDM.
EXECUTION TERMINATED.

AT LINE 15210
IN SUBPROGRAM UENOCH CALLED AT LINE 9420
IN SUBPROGRAM RDCHAR CALLED AT LINE 9930
IN SUBPROGRAM RDFLD CALLED AT LINE 9680
IN SUBPROGRAM RDADS CALLED AT LINE 10140

READY

* UE's WILL BE EXPLAINED LATER IN THE *
* COURSE. TRY TO RUN YOUR PROGRAM *
* AGAIN USING A DIFFERENT DATA FILE. *
* USE DAT26ADR. *

OLD CHAREQ ®

READY

QED ®

($ S /DATUE/DATIADR/P ®- (®

250 INCLUDE *U07008:DATlADR

(E®®

READY

* REPLACE THE OLD VERSION OF CHAREQ *

REPLACE ®
READY

SOFTWARE ENGINEERING PRINCIPLES 13-29
14-25 July 1980

AdAV

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

* RERUN YOUR PROGRAM *
* **** *** *** **** ** *** **

RUN F78

* YOUR RESULTS WILL BE PRINTED AT *
* THE TERMINAL AS FOLLOWS: *

MAD-APM 25 JUN 70 14:43

STARTING ADDRESS INPUT

ADDRESS READING COMPLETE

OUTPUT OF AREA IS:
MR. STEPHEN ALONZO WILEY
AIR 53424E
NAVAIRSY SCOM
WASHINGTON, DC 20331

13-30 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

.............. !

MADDS. 5 Informal Functional Specifications for
MADDS Modules

EXAMPLE DESCRIPTION

introduction

Each module may be completely defined in terms of its interface with the

outside w -ld. This interface consists of those operations, or functions,

which c~n be invoked from outside the module. A description of this interface

must. therefore, be from the point of view of the user. This document is a

set of informal specifications for the functions of the MADDS modules. These

functions may be used in programs of other modules. Other information about

the modules, such as implementation considerations (involving specific

machine, operating system, and programming language characteristics), is given

elsewhere.

The following are some remarks that aid in the use of the informal

specifications.

I. The informal specifications of functions given below are independent of

any specific programming language (e.g., FORTRAN, ALGOL, PL/I. COBOL). If

the specifications indicate that a function returns a value, then the

function is normally used in a programming language as a function

reference. For example, in FORTRAN typical references (using functions
defined below) are:

I = GETNCA()
CH - GETCHR(STRNG,POSIT)

If in the specifications a function does not return a value, then it is .a

pure procedure (e.g., a subroutine in FORTRAN) and is used by means of an

explicit call. Some example FORTRAN calls are:

CALL INITAS
CALL SETCHR(STRNGPOSIT,CHR)

2. The character set for type char is the ASCII character set. It is

possible to use single-character alphanumeric literals in place of any

type char identifiers. For example, we might have:

CALL SETCHR(STRNG, POSIT, 'A')

F = CHAREQ('!'.CH)

SOFTWARE ENGINEERING PRINCIPLES 13-31

14-25 July 1980

. , L ..2aa,. _21 .3abraatm A,

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

The following character operations must be done using the access functions
of the Character Module:

a) Comparing two characters for equality;

b) Comparing two characters to see if one has the relation "less

than" to the other.

3. A string is a sequence of type char characters and has a fixed positive
length. The following string operations must be done using the access
functions of the String Storage Module:

a) Setting a position in a string to a given character;

b) Retrieving a character from a given position in a string;

c) Retrieving a substring of a string, given a starting position
and desired length;

d) Comparing two strings for equality.

4. An address is simply a set of strings. If one. but not all, of the fields
is undefined (i.e., has not been assigned a string value), then the
address is partially defined, and if all fields are undefined, then the
address is undefined. If all fields of an address are defined, then the
address is complete. An 'address identifier is a positive integer no
larger than maximum address storage capacity MAXADS and is "absurd" if not
in this range. Once the number of complete addresses n: 0 :!:n !!;MAXADS
has been determined (by VERADS of the ASM), subsequently giving CETNCA
n, we may say that an address identifier adr is assigned if and only if
1 !9 adr 5' GE'INCA. and unassigned otherwise. There are no operations on
addresses as such; only the setting of and retrieving from their fields is
allowed. Multiple ownership of addresses (e.g., several instances of the
same identifier value occurring in the system) is permitted; however,
caution must be exercised because changes to an address by one owner, of
course, affects the other owners -- possibly adversely.

5. The user of a function need be concerned onl with what a function does
and how to call or reference it; he is not concerned with how a function
does its task. The EFFECTS part of an informal function specification
contains most of this task description. For example, the EFFECTS part for
most functions mentions tests for undesired events (UEs) and the
corresponding UE handler calls. The user of the function does not set up
these tests for these calls; this is the job of the implementor. The user
may refer to the informal specifications for the modules or the tIE handler
mentioned in the EFFECTS part for further information (e.g., the action of
the UE handling functions in the UEH).

13-32 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Informal Functional Specifications for MADDS Modules /Doc. MADDS.5

TABLE OF CONTENTS

Module and Function Names Page

Applications Program Module (APM) 13-34
AREA
RANK

Address Storage Module (ASM) 13-36
INITAS
MAXADS
VERADS
GETNCA
SET@
GET@

Character Module (CHM) 13-40
CHAREQ
CHARLT

Input Device Module (IDM) 13-41
OPENID

CLOSID
RDCHAR

Input Module (IPM) 13-42
RDADS

Master Control Module (MCM) 13-43
MAIN

Output Device Module (ODM) 13-44
OPENOD
CLOSOD
WRCHAR
NEWLIN

Output Module (OPM) 13-46
WRADR

String Storage Module (SSM) 13-47
SETCHR

GETCHR
SUB STR
STREQ

Undesired Event Handler (UEH) 13-49
UE$

SOFTWARE ENGINEERING PRINCIPLES 13-33
14-25 July 1980

. -----

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

Informal Function Specifications

1. Applications Program Module

FUNCTION CALLING FORM: AREA(prezip) MODULE: APM

INPUT PARAMETERS:

Name Type Description

prezip string a string whose first three characters
are digits dld 2d3 , giving the
area part (first three digits) of a set
of ZIP-codes, and whose remaining

characters are blanks

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: AREA selects and writes out all complete addresses with dldid 3

as the area part of their ZIP-code fields. If no addresses are

selected, then no output occurs. A set of complete addresses (for
searching and selection) exists after RDADS of the IPM has been
called; hence, AREA assumes that RDADS has been called since the
last INITAS. AREA also assumes that the output device is open for
output.
If dld 2d3 is not a three-digit sequence representing an

integer i : 0 ! i < 999,
then UEZIP is called.

13-34 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Informal Functional Specifications for MADDS Modules / Doc. MADDS.5

FUNCTION CALLING FORM: RANK(oglim) MODULE: APM

INPUT PARAMETERS:

Name Type Description

oglim string a string whose first two characters are
digits dld 2 giving an O-grade

level, and whose remaining characters
are blanks

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: RANK selects and writes out all complete addresses with
O-grade ! dld 2 . The O-grade is determined by the following
table. A set of complete addresses (for searching and selection)
exists after RDADS of the IPM has been called; hence, RANK assumes
that RDADS has been called since the last INITAS. RANK assumes the
output device is open for output.
If dld 2 is not a two-digit sequence representing an integer
i: 1 ! i : 10,

then UEOGL is called.

Table: O-grade Levels

Service: USA USN blank
USAF
USMC

O-grade Title Title GS Level

01 2LT ENS 07
02 ILT LTJG 08. 09
03 CAPT LT 10, 11
04 MAJ LCDR 12
05 LCOL CDR 13, 14
06 COL CAPT 15
07 BG RADM 16
08 MG RADM 16
09 LG VADM 17
10 GEN ADM 18

SOFTWARE ENGINEERING PRINCIPLES 13-35
14-25 July 1980

if

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

2. Address Storage Module

FUNCTION CALLING FORM: INITAS MODULE: ASM

INPUT PARAMETERS: None

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: INITAS initializes the ASM for the storage of addresses. That is,
it sets up the data structures and places the ASM in the initial
state (i.e., capable of address storage but with no addresses
presently existing and all fields undefined). It must be called
prior to any calls to other ASM functions to assure that the ASM
operates correctly in all cases. A call to INITAS automatically
destroys any currently existing addresses and returns the ASM to
maximum address storage capacity available.

--

FUNCTION CALLING FORM: MAXADS MODULE: ASM

INPUT PARAMETERS: None

FUNCTION VALUE TYPE: integer

FUNCTION VALUE: maximum address storage capacity

EFFECTS: None

FUNCTION CALLING FORM: VERADS MODULE: ASM

INPUT PARAMETERS: None

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: VERADS determines the largest integer n: 0 : n : MAXADS, for which
all address identifiers adr: i : adr s n have all fields defined,
and sets an internal counter in the ASM to n. The value of this
counter is considered to be the number of complete addresses stored
and is returned as the value of GETNCA of the ASM. The ASM is in a
correct state only if all fields of all address identifiers adr are
undefined, for n < adr - MAXADS.
If there is a defined field for an adr: n < adr ! MAXADS (i.e.. an
incorrect state for the ASM),

then UEASMI is called.

13-36 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Informal Functional Specifications for MADDS Modules / Doc. MADDS.5

FUNCTION CALLING FORM: GETNCA MODULE: ASM

INPUT PARAMETERS: None

FUNCTION VALUE TYPE: integer

FUNCTION VALUE: The number of complete addresses stored

EFFECTS: GETNCA returns the value of an internal counter in the ASM giving

the number of complete addresses stored.
If VERADS hasn't been called since the last INITAS,

then UENCAU is called.

Below is a table of field mnemonics @, their corresponding descriptive

phrases #, and the lengths of their string parameters $. For each, there is a

field setting 'i.e., insertion) and a field getting (i.e., extraction)
function in the ASM.

Table: Field Mnemonics for Addresses

BOC Branch-Or-Code 20

CIT City 25
COA Command-Or-Activity 30

GN Given Names 20
GSL GS Level 2

LN Last Name 25
SER Service 5

SOP Street-Or-Post-Office-Box 30
ST State Abbreviation 2

TIT Title 10
ZIP ZIP-Code 9

For the field insertion functions, a single informal specification schema

suffices, which is identical for each field except for the field mnemonic @,
its descriptive phrase #, and its string parameter length $. The same is true
for field extraction. Below are given the field insertion and extraction

schemas, each followed by an example obtained in this case by substituting
'BOC' for @, 'Branch-Or-Code' for #, and '20' for $.

SOFTWARE ENGINEERING PRINCIPLES 13-37

14-25 July 1980

'9 -.___

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

Field Insertion Function Schema

FUNCTION CALLING FORM: SET@(adrstr) MODULE: ASM

INPUT PARAMETERS:

Name T Description

adr integer identifier of an address

str string a string

FUNCTION VALUE TYPE: None

FUNCTION VALUE: Nn-n

EFFECTS: The first $ characters of the string str are stored as the new
value of the # field of the address adr. If the length of str is
less than $, then the # field is set to str followed by blanks. In
either case, the previous value is lost.
If adr is < I or >MAXADS.

then UEAIDA is called.

Sample Field Insertion Function

FUNCTION CALLING FORM: SETBOC(adr,str) MODULE: ASM

INPUT PARAMETERS:

Name Type Description

adr integer identifier of an address

str string a string

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: The first 20 characters of the string str are stored as the new
value of the Branch-or-Code field of the address adr. If the
length of str is less than 20, then the Branch-or-Code field is set

to str followed by blanks. In either case, the previous value is

lost.
If adr is < I or >MAXADS,

then UEAIDA is called.

13-38 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Informal Functional Specifications for MADDS Modules / Doc. MADDS.5

Field Extraction Function Schema

FUNCTION CALLING FORM: GET@(adr) MODULE: ASM

INPUT PARAMETERS:

Name Type Description

adr integer identifier of an address

FUNCTION VALUE TYPE: string with length $

FUNCTION VALUE: the string stored in the # field of address adr.

EFFECTS: If adr is < 1 or > MAXADS,

then UEAIDA is called.
If the # field of address identifier adr is undefined but adr has a
defined field (i.e., partial address),

then UEADRP is called.
If all fields of address adr are undefined,

then UEADRU is called.
--

Sample Field Extraction Function

FUNCTION CALLING FORM: GETBOC(adr) MODULE: ASM

INPUT PARAMETERS:

Name Type Description

adr integer identifier of an address

FUNCTION VALUE TYPE: string with length 20

FUNCTION VALUE: the string stored in the Branch-Or-Code field of address adr.

EFFECTS: If adr is < I or >MAXADS,

then UEAIDA is called.
If the Branch-Or-Code field of address identifier adr is undefined
but adr has a defined field (i.e., partial address),

then UEADRP is called.
If all fields of address identifier adr are undefined,

then UEADRU is called.

--

SOFTWARE ENGINEERING PRINCIPLES 13-39
14-25 July 1980

_ _ _ _ _ _ _ _ _

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

3. Character Module

FUNCTION CALLING FORM: CHAREQ(chl, ch2) MODULE: CHM

INPUT PARAMETERS:

Name Type Description

chl char first character to be compared

ch2 char second character to be compared

FUNCTION VALUE TYPE: boolean

FUNCTION VALUE: if chl = ch2 then true else false

EFFECTS: Equality (=) is defined as equality of the internal integer
character codes, except in the following cases: upper and lower

case alphabetic characters are considered equal (e.g., "a" = "A",
"b" = "B" , z" = "Z

FUNCTION CALLING FORM: CHARLT(chl, ch2) MODULE: CHM

INPUT PARAMETERS:

Name Type Description

chl char first character to be compared

ch2 char second character to be compared

FUNCTION VALUE TYPE: boolean

FUNCTION VALUE: if chl < ch2 then true else false

EFFECTS: The relation is-less-than (<) is defined by the following:

(a) SPACE < rA' < {B} < ... < Z < 0 < 1 < ... < 9
(blank) W Lj. ~z

(b) is restricted to this subset of characters and hence is a

partial function.
If chl or ch2 is not a blank, a digit, or a letter,

then UECHLT is called.

13-40 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Informal Functional Specifications for MADDS Modules /Doc. MADDS.5

4. Input Device Module

FUNCTION CALLiNG FORM: OPENID MODULE: IDM

INPUT PARAMETERS: None

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

'EFFECTS: OPENID "opens", or initializes, the input device and the buffers,

etc., to enable reading. The input device is initially in the
closed state. Whenever it is in the closed state, it must be

opened by OPENID, prior to reading characters via RDCHAR.
If the input device is open and OPENID is called,

then UEROPN is called.

FUNCTION CALLING FORM: CLOSID MODULE: IDM

INPUT PARAMETERS: None

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECT9: CLOSID "closes" the input device to reading. For each OPENID there
must be a corresponding CLOSID.
If the input device is closed and CLOSID is called,

then UERCLS is called.

FUNCTION CALLING FORM: RDCHAR MODULE: IDM

INPUT PARAMETERS: None

FUNCTION VALUE TYPE: char

FUNCTION VALUE: the next character from the input device

EFFECTS: If the input device is closed,
then UEWRCL is called.

If no characters are available on the input device,
then UENOCH is called.

If a device error occurs during the read,
then UEDVER is called.

SOFTWARE ENGINEERING PRINCIPLES 13-41
14-25 July 1980

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

5. Input Module

FUNCTION CALLING FORM: RDADS MODULE: IPM

INPUT PARAMETERS: None

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: The input addresses are read from an external storage medium or
device accessed by the IDM. These addresses are in external form
as sequences of characters, which are partitioned into strings
according to an input format known to the IPM. RDADS by means of
the IDM causes these strings to be read in character-by-character
and stored as the fields of a set of addresses. The reading of
this set of addresses is terminated at the first "address" whose
first field consists of all end-of-file marker characters; this
"address" is not stored. No input validation is perfo-med on the

input field values. After all input has been read, RDADS cills

VERADS of the ASM to verify the addresses as complete and t set

the number-of-complete-addresses counter in the ASM. RDADS uses

functions of the IDM to open and close the input device (file).

If the number of addresses read exceeds MAXADS of the ASM,

then UEADOV is called.

13-42 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

• j ., . ,,

Informal Functional Specifications for MADDS Modules / Doc. MADDS.5

6. Master Control Module

FUNCTION CALLNG FORM: MAIN MODULE: MCM

INPUT PARAMETERS: None

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: MAIN is the main driver program. It initiates all module
initializations by invoking functions in the modules requiring this
action. The central task of MAIN is to specify a particular
sequence if input, output, and computation actions for which MADDS
is designed. Thus, it will typically use the IPM, the APM and
possibly the ODM; however, the capabilities of all the modules are
available to MAIN, subject only to use rules stated in their
interface specifications.

SOFTWARE ENGINEERING PRINCIPLES 13-43
14-25 July 1980

- -...-- .=,_ *1,." ,
w -

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

7. Output Device Module

FUNCTION CALLING FORM: OPENOD MODULE: ODM

INPUT PARAMETERS: None

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: OPENOD "opens", or initializes, the output device and buffers,

etc., to enable -,riting. The output device is initially in
the closed state. Whenever it is in the closed state, it must

be opened by OPENOD, prior to writing characters via WRCHAR.
If the output device is open and OPENOD is called,

then UEROPN is called.

FUNCTION CALLING FORM: CLOSOD MODULE: ODM

INPUT PARAMETERS: None

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: CLOSOD "closes" the output device to writing. For each OPENOD

there must be a corresponding CLOSOD. The output device is
initially in the closed state.
If the output device is closed and CLOSOD is called,

then UERCLS is called.

13-44 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

-4 . -. " 7-

Informal Functional Specifications for MADDS Modules / Doc. MADDS.5

FUNCTION CALLING FORM: WRCHLAR(chr) MODULE: ODM

INPUT PARAMETERS:

Name l Description

chr char a character to be written

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: The character chr is written on the output device.
If the output device is closed,

then UEWRCL is called.
If a device error occurs during the write,

then UEDVER is called.

FUNCTION CALLING FORM: NEWLIN MODULE: ODM

INPUT PARAMETERS: None

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: NEWLIN undertakes device-dependent actions which have the effect of
writing an end-of-line character for the device (via WRCHAR). No
printable character is actually written on the device. Subsequent

writes by WRCHAR start on the next line, unless the current line
has not had any printable characters written to it, in which case
subsequent writes are to the current line.
If the output device is closed,

then UEWRCL is called.
If a device error occurs during the write,

then UEDVER is called.

SOFTWARE ENGINEERING PRINCIPLES 13-45
14-25 July t980

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

8. Output Module

FUNCTION CALLING FORM: WRADR(adr) MODULE: OPM

INPUT PARAMETERS:

Name Type Description

adr integer identifier of an address

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: The address adr is written out to an external device used by the
ODM. Certain fields of the address are written character-by-
character according to an output format known to the OPM. This

format specifies at least the order and identity of fields,
spacing, and line contents. It is assumed that RDADS of the IPM
has been called since the last INITAS.
If adr < 1 or > MAXADS,

then UEAIDA is called.
If GETNCA < adr : MAXADS,

then UEAIDU is called.

13-46 IOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Informal Functional Specifications for MADDS Modules / Doc. MADDS.5

9. String Storage Module

FUNCTION CALLING FORM: SETCHR(str, pos, chr) MODULE: SSM

INPUT PARAMETERS:

Name Type Description

str string a string

pos integer a character position in str

chr char a character to be inserted

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: SETCHR replaces the character at position pos of string str by the

character chr.
If pos < 1 or pos > length of str,

then UESPOS is called.

FUNCTION CALLING FORM: GETCHR(str, pos' MODULE: SSM

INPUT PARAMETERS:

Name Type Description

str string string

pos integer a character position in str

FUNCTION VALUE TYPE: char

FUNCTION VALUE: the character at position pos of string str

EFFECTS: If pos < 1 or pos > length of str,
then UESPOS is called.

SOFTWARE ENGINEERING PRINCIPLES 13-47

14-25 July 1980

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

FUNCTION CALLING FORM: SUBSTR(str, pos, len) MODULE: SSM

INPUT PARAMETERS:

Name Type Description

str string a string

pos integer a character position in str

len integer the length of the substring to be
extracted

FUNCTION VALUE TYPE: string

FUNCTION VALUE: a string whose first len characters are the len characters

of the string str, beginning with position pos, and whose
remaining characters are blanks

EFFECTS: If pos < I or pos > length of str,
then UESPOS is called.

If len < 0 or pos + len - 1 > length of str,
then UESLEN is called.

FUNCTION CALLING FORM: STREQ(strl, str2) MODULE: SSM

INPUT PARAMETERS:

Name Type Description

strl string a string

str2 string a string

FUNCTION VALUE TYPE: boolean

FUNCTION VALUE: if strl = str2 then true else false

EFFECTS: Let ci and c'i denote the characters at position i of strings
strl and str2, respectively. Let L be the length of the shorter of
the two strings. Then strl and str2 are equal (=) if and only if.

a) for I - i ! L, CHAREQ(ci, c'i), and

b) all remaining characters of the longer string are blanks.

If both strl and str2 are the same length, then the second

condition is, of course, unnecessary.

13-48 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

' ' I -I.. . .. ' " ' ': ' ' .. . -

Informal Functional Specifications for MADDS Modules / Doc. MADDS.5

10. Undesired Event Handler

The UEH consists of the UE handling functions, one for each UE. The list

of UEs that can occur are summarized in the following table, where $ is the UE

mnemonic and € is the corresponding UE description.

Table: Undesired Events (UEs)

$ cl

ADOV Address storage capacity overflow

ADRP Partially defined address (at least one field undefined)
ADRU Undefined address (no fields defined)
AIDA Absurd address identifier (i.e., < I or > max capacity)
AIDU Unassigned address identifier (i.e., > GETNCA and ! MAXADS)
ASMI State of the ASM incorrect (i.e., defined fields beyond GETNCA)
CHLT Undefined character comparison
DVER Device error
MIDU Non-existent module identifier
NCAU Undefined number of complete addresses
NOCH No characters available on input device
OGL O-grade level is < 1 or > 10
RCLS Redundant device closing
ROPN Redundant device opening
SLEN Substring length is < 0 or too large
SPOS Character position in string is < I or > string length

WRCL Writing or reading on closed device

ZIP ZIP-code area part not three decimal digits

All of the UE handling functions can be represented by a single function

schema. This is given below, using UE mnemonic $ and description ¢, and is

followed by a sample UE function. Note that there is a UE handler for UEs in

the UE handlers (i.e., MIDU; see next page).

The module Jentifiers used as arguments in the UE handler calls are

simply the module abbre -ations given in the informal specifications.

3OF74ARE ENGINEERING PRINCIPLES 13-49

-2r J111y 1980

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

UE Function Schema

FUNCTION CALLING FORM: UE$(mdid,fnid) MODULE: UEH

INPUT PARAMETERS:

Name Type Description

mdid string module identifier

fnid string function identifier

zUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: A message is written out to the effect that the UE: "c" has been
detected in function fnid of module mdid and the run is aborted.
Then execution is terminated.

If mdid is not the identifier of a known module,
then UEMIDU is called (except when $ is MIDU; that is, UEMIDU
will not call itself).

--

Sample UE Function

FUNCTION CALLING FORM: UEAIDU(mdid,fnid) MODULE: UEH

INPUT PARAMETERS:

Name T Description

mdid string module identifier

fnid string function identifier

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: A message is written out to the effect that the UE: "Unassigned
address identifier" has been detected in function fnid of module
mdid and the run is aborted. Then execution is terminated.
If mdid is not the identifier of a module,

then UEMIDU is called.

13-50 SOFTWARE ENGINEERING PRINCIPLES

14-25 July 1980

r.din .im4-

MADDS.6 MADDS Input Formats

EXAMPLE DESCRIPTION

The list of addresses input to MADDS can be read in character by
character. Addresses follow directly after one another without intervening
characters. Each address consists of 11 fields. The fields follow directly
after one another as specified in the following table.

Field Size

(Number of
Field Name Characters) Contentl

1 Title 4 E.g., "Mr.", "Ms.", "Dr.",
"CAPT", "Capt" 2

2 Last Name 15
3 Given Names 20 Two strings separated by at

least one blank; First string
is first name, second is
middle

4 Branch or Code 20
5 Command or Activity 20
6 Street or P.O. Box 20 E.g., "P.O. Box 208"

7 City 20
8 State Abbreviation 2
9 Zip Code, APO code, 7 Contiguous decimal digits

or FPO code
10 GS Level 2 "01", "02".. "18113
11 Branch of Service 4 "USA", "USMC", "USN", "USAF"

or an upper-lowercase variant

1. The value of any field can be an all-blank string. If the value of a
field is not an all-blank string, then its first character will be
non-blank (i.e., values are left justified). Any example field value
shorter than the field size should be considered to be padded on the

right with blanks.
2. An officer rank appears when the Branch of Service field is non-blank.

3. Value is all blanks when Branch of Service field is non-blank and is
non-blank only when Branch of Service is all blanks.

The last address of the file is fake, having only a title field consisting
completely of asterisks. It is an end-of-file marker.

S0TWARE E r3INEZR1'4G PRINCIPLES 13-51
14-25 July 1?80

AN* I-Af__A

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

As mentioned in MADDS.1, it is possible that the format of the address
file might change. One imminent change is that the 11 fields will follow one
another as specified in the following table. The last address of the file is
still fake, having only a command or activity field consisting of asterisks.

Field Name

1 Command or Activity

2 Street or P.O. Box
3 City
4 State Abhlreviation
5 Zip Code, APO code,

or FPO code
6 Title
7 Given Names

8 Last Name
9 Branch or Code

10 GS Level
11 Branch of Service

13-52 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

MADDS.7 MADDS Output Formats

EXAMPLE DESCRIPTION

Each address produced by MADDS should adhere to the followi.g format:

Line 1: Title

single blank
Given Names

single blank
Last Name

Line 2: Branch or Code (BOC)

Line 3: Command or Activity (COA)

Line 4: City

comma
single blank
State Abbreviation

single blank
Zipcode

Trailing blanks in a field should not be printed. Addresses are separated

from one another by five blank lines. Each output line is to begin in the
first column.

As mentioned in MADDS.l, the output format is likely to change. The new

format could be the following:

Line 1: Command or Activity (COA)

Line 2: City
comma

single blank
State Abbreviation

Line 3. Street or Post Office Box

Line 4: Last Name

Trailing blanks in a field should not be printed. Addresses are separated
from one another by three blank lines. Each output line is to begin in the
first column.

SOFTWARE ENGINEERING PRINCIPLES 13-53
14-25 July 1980

MADDS.8 MADDS Implementation Notes

General

Everyone should read the informal specifications for all of the modules
whose interface functions he or she will be using. The Master Control Module
(MCM) performs all initializations for the modules. No other module
initializations should be done.

The Undesired Event Handler

In this implementation of MADDS, character constants are used for module
and function identifiers in calls to the UE handling functions.

A call to a UE handling function should be such that, if control returns
to the calling program, normal processing can continue. The return implies
that corrective action has taken place.

FORTRAN 78 Compilation

To compile an F78 program, type

OLD (program name)®
READY
COMPILE F7 8®

If compilation is successful, the resulting machine-language file is named
.OBJECT. and becomes the new current file. Rename the file by typing

RENAME (module name).OBJ

then save it.

The name of your object module should be one of the following:

o ASM.OBJ
o IPM.OBJ
o OPM.OBJ
o APM.OBJ I RUEDING PAGE BLAUK-NOT U

SOFTWARE ENGINEERING PRINCIPLES 13-55
14-25 July 1980

4 ----- __ ____ ____ ____LAW_

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

Linking

To run your module, you will have to link first with the other MADDS

modules. These modules are stored in library files. The name of each of the
files indicates which module of MADDS is missing. For example, MAD-ASM will
contain all modules except ASM. If you are writing ASM you should link with
that file. If you are writing OPM, link with MAD-OPM; if you are writing APM,
link with MAD-APM; if you are writing IPM, link with MAD-IPM.

File name Contents of file

U07008:MAD-APM All modules except APM
U07008:MAD-ASM All modules except ASM
U07008:MAD-IPM All modules except IPM
U07008:MAD-OPM All modules except OPM
U07008:DATlADR Test data file with 1 address
U07008:DAT3ADR Test data file with 3 addresses
U07008:DAT7ADR Test data file with 7 addresses
U07008:DATUE Test data file that will cause a UE
U07008:DAT26ADR Test data file with 26 addresses

To link with the MADDS modules you require, the last two lines of your source

program should be:

INCLUDE *(one of the MAD files)

INCLUDE *(one of the DAT files)

To run your program, you then make the file containing the object code for
your module your current file and type:

RUN F78

For your final production run, use DAT26ADR as your test data file.

13-56 SOFTWARE ENGINEERING PRINCIPLES

14-25 July 1980

€ t

opI
MADDS. 9 MADDS Program Listings

EXAMPLE DESCRIPTION

Table of Contents

Module Page

APM 13-58

ASM 13-60

CHM 13-85

1DM 13-86

1PM 13-F8

MCM 13-89

0DM 13-90

OP1I 13-92

SSM 13-94

UEH 13-96

SOFTWARE ENGINEERING PRINCIPLES 13-57j 14-25 July 1980

E. ___M

SEC. 13 /MILITARY ADDRESS SYSTEM (MADDS)

100 *
110 * apm
120 *
130 * output addresses with zip area part prezip
140 *
150 subroutine area(prezip)
160 impl icit
170 character*1 digit(10) ,getchr,chr
180 character*3 prezip,zarea,substr
190 character*9 getzip
200 integer adr, getnca, i, j, n
210 logical chareq,streq
220 data digit!' l','21,131,'41, '5', '6' ,'7' ,'8',191,10 /
230
240 do 20 j=1,3
250 chr=getchr (prezip,j)
260 do 10 i=1,10
270 if (chareq(chr,digit(i))) go to 20
280 10 continue
290 call uezip('apn','area')
300 20 continue
310 nT-getnca ()
320 if (n.eq.0) return
330 do 30 adr=l,n
340 zarea = substr(getzip(adr) ,l,3)
350 if (streq(zarea,prezip)) call wradr(adr)
360 30 continue
370 return
380 end
390 *
400 * p
410 *
420 * output addresses with 0-grade at most oglin
430 *
440 subroutine rank(oglim)
450 implicit
460 character*l chl,ch2,ch3,ch4,getchr,digit(l0)

* 470 character*2 oglim,gslev(l0) ,gsl,getgsl
* 480 character*4 serv,usatit(10) ,usntit(l0)

490 character*5 getser
500 character*10 title, gettit
510 integer lim,nca,getnca,adr,j
520 logical chareq,charlt,streq
530 data usatit/'21t' , 11t, ,capt,ma','lcol'co1','gx','m1'
540 &lg',gen'/
550 data usntit/'ens','ltjg','lt','lcdr','cdr','capt','radm',
560 &'radm','vadm','adm'/
570 data gslev/'07' ,'09 ,'11' ,'12 ,114 ,'15' ,'16' ,116 ,117' ,'18'/
580 data digit/'1' ,'2','31,' 4' ,'5', '6' ,17','8,191'0 1/
590

13-58 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

-~~~~~~ *- - OMMOMM_____----I

MADDS Program Listings /Doc. MADDS.9

600 chl=getchr(oglin,1)
610 ch2=getchr Ccg1im,2)
620 if (chareq(chl,'0')) go to 10
630 if (.not.chareq(chl,'1')) go to 30
640 if (.not.chareq(ch2,'0')) go to 30
650 lrn = 10
660 go to 40
670 10 do 20 limn=1,9
680 if (chareq(ch2,digit(lim))) go to 40
690 20 continue
700 30 call ueogl('apii','rank')
710 40 nca=getnca()
720 if (nca.eq.0) return
730 do 80 adr=l,nca
740 serv=getser(adr)
750 title=gettit(adr)
760 if (streq(serv,' ')) go to 70
770 chl=getchr(serv,1)
780 ch2=getchr (serv,2)
790 ch3=getchr (serv,3)
800 ch4=getchr(serv,4)
810 if (.not.chareq(chl,'u') .or. .not.chareq(ch2,'s')) go to 80
820 if (chareq(ch3,'n')) go to 60
830 if (chareq(ch3,'a')) go to 45
840 if (.not.chareq(ch3,rn')) go to 80
850 if (chareq(ch4,'c')) go to 50
860 go to 80
870 45 if (.not.(chareq(ch4,' ').or.chareq(ch4,'f'))) go to 80
880 50 do 37 j=1,lirn
890 if (.not.streq(title,usatit(j)))go to 57
900 call wradr(adr)
910 go to 80
920 57 continue
930 go to 80
940 60 do 67 j=l,lin
950 if (.not.streq(title,usntit(j)))go to 67
960 call wradr (ar)
970 go to 8 0
980 67 continue
990 go toBO0
1000 70 gsl=getgsl(adr)
1010 chl=getchr (gsl ,1)
1020 ch2-getchr (gsl ,2)

1030 if(charlt(getchr(gslev(lin),1),chl)) go to 80
1040 if(charlt(chl,getchr(gslev(lin) ,l))) go to 75
1050 if (charlt(getchr(gslev(lin),2),ch2)) go to 80
1060 75 call wradr (ar)
1070 80 continue
1080 return
1090 end

SOFTWARE ENGTNEERING PRINCIPLES -3-59
14-25 July 1980

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

1100 *

1110 * asm
1120 *

1130 * initialize the asm
1140 *

1150 subroutine initas
1160 implicit
1170 character*30 sop,coa
1180 character*25 cit,ln
1190 character*20 boc,gn
1200 character*10 tit
1210 character*9 zip

1220 character*5 ser
1230 character*2 gsl,st
1240 integer nca,mad,nflds,adr,i,j
1250 logical adflag
1260 parameter (mad=26,nflds=ll)
1270 comon /asmblk/nca,sop(mad) ,coa(mad) ,cit(mad) ,ln(mad) ,boc(mad),
1280 & gn(mad) ,tit(mad) ,zip(mad) ,ser(mad) ,gsl(mad) ,st(mad),
1290 & adflag(mad,nflds)
1300
1310 nca=-1
1320 do 10 j=i,nflds
1330 do 10 i=l,mad
1340 adflag (i,j) =.false.
1350 10 continue
1360 return
1370 end
1380 *
1390 * asm
1400 *
1410 * maximum nunber of addresses
1420 *
1430 integer function maxads
1443 implicit
1450 integer mad,nflds
1460 parameter (mad=26,nflds=ll)
1470 maxad s=mad
1480 return
1490 end

13-60 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

MADDS Program Listings /Doc. MAflDS.9

1500 *
41510 * asm

1520 *
1530 * determine nunber of consecutive complete addresses
1540 *
1550 subroutine verads
1560 implicit
1570 character*30 sop,coa
1580 character*25 cit,ln
1590 character*20 boc,gn
1600 character*10 tit
1610 character*9 zip
1620 character*5 ser
1630 character*2 gsl,st
1640 integer nca,mad,nflds,adr,i,j,n
1650 logical adflag
1660 parameter (mad=26,nflds=11)
1670 common /asnblk/nca,sop(mad) ,coa (mad) ,cit (mad) ,ln (mad) ,boc(mad),
1680 & gn(mad) ,tit(mad) ,zip(mad) ,ser (mad) ,gsl (mad) ,st(mad),
1690 & ad flag (mad, nflds)
1700
1710 do 20 n=1-,mad
1720 do 10 j=l,nflds
1730 if (.not.adflag(n,j)) go to 30
1740 10 continue
1750 20 continue
1760 nca--mad
1770 return
1780 30 nca=n-1
1790 do 50 i=n,mad
1800 do 40 j=1,nflds
1810 if (adflag(i,j)) call ueasmi('asn', 'verads')
1820 40 continue
1830 50 continue
1840 return
1850 end

SOFTWARE ENGINEERING PRINCIPLES 13-61
14-25 July 1980

SEC. 13 /MILITARY ADDRESS SYSTEM (MALOS)

1860*
1870*
1880 * s
1890*
1900 *get ntinber of consecutive addresses
1910*
1920 integer function getnca
1930 implicit
1940 character*30 sop,coa
1950 character*25 cit,In
1960 char acte r *20 bo~g
1970 character*10 tit
1980 character*9 zip
1990 character*5 ser
2000 character*2 gsl,st
2010 integer nca,rnad,nflds
2020 logical adflag
2030 parameter (mad=26,nflds=11)
2040 common /asrblk/nca, sop(mad) ,coa(mad) ,cit(mad) ,ln(-.ad) ,boc(mad),
2050 & gn(rnad) , tit (mad) , zip(mad) .,ser (mad) ,gsl (mad) ,st (mad),
-060 & ad flag (mad,nf lds)
2070
2080 if (nca.lt.0) call uencau('aszn','gecnca')
2090 getnca--nca
2100 return
2110 end

:3-62SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

MADDS Program Listings /Doc. MADDS.9

2120 *
2130 * an
2140 *
2150 * set branch-or-code field of adr to str
2160 *
2170 subroutine setboc(adr,str)
2180 implicit
2190 character*30 sop,coa
2200 character*25 cit,ln
2210 character*20 boc,gn
2220 character*l0 tit
2230 character*9 zip
2240 character*5 ser
2250 character*2 gsl,st
2260 character*(*) str
2270 integer nca,mad,nflds,adr
2280 logical adflag
2290 parameter (mad=26,nflds=ll)
2300 common /asmblk/nca,sop(mad) ,coa(mad) ,cit (mad) ,ln(mad),boc(mad),
2310 & gn(mad) ,tit(mad) ,zip(mad) ,ser (mad) ,gsl (mad) ,st(mad) ,
2320 & ad flag (mad ,nflds)
2330
2340 if (adr.lt.l.or.adr.gt.mad) call ueaida('asn','setboc')
2350 boc (ad r) =str
2360 adflag(adr,l)=.true.
2370 return
2380 end

SOFTWARE ENGINEERING PRINCIPLES i 3-63

14-25 July 1980

AO-AG87 997 NAVAL RESEARCH LAB WASHINGTON DC F/G 9/2
SOFTWARE ENGINEERING PRINCIPLES. CU)
JUL So L J CHRICRA, P CLEMENTS, C L HEITMEYER

NLASSIFIED N

111IL~125 III~ il1.6

MICROCOPY RErSOLUTION 1 [S1 CHART
N NA I f , .

* SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

~2390

2400 *am

2410*
2420 * set city field of adr to str
2430 *
2440 subroutine setcit(adr,str)
2450 implicit
2460 character*30 sop,coa
2470 character*25 cit,ln
2480 character*20 boc,gn
2490 character*10 tit
2500 character*9 zip
2510 character*5 ser
2520 character*2 gsl,st
2530 character*(*) str
2540 integer nca,mad,nflds,adr
2550 logical adflag
2560 parameter (mad=26,nflds 11)
2570 common /aarmblk/nca,sop(mad) ,coa(mad) ,cit(mad) ,ln(mad) ,boc(mad),2580 & gn(mad) ,tit(mad) ,zip(mad) ,sert(mad) ,gsl(mad) ,st(mad),
2590 & adflag (mad,nflds)
2600
2610 if (adr.lt.l.or.adr.gt.mad) call ueaida(asm' ,'setcit')
2620 cit(adr) =str
2630 adflag(adr,2)=.true.
2640 return
2650 end

13-64 SOFTWARE ENGINEERING PRINCIPLES

14-25 July 1980

A. _ - ,_ _ - -. . .. - , , ,"--
.

-. "- "-- _ l--

2670 MADDS Program Listings /Doc. MADDS.9I

2660 *
260* astm

2680 *
2690 * set commnri-or-activity field of adr to sir
2700 *
2710 subroutine setcoa(adr,str)
2720 implicit
2730 character*30 sop,coaI2740 character*25 cit,ln
2750 character*20 boc,gn
2760 character*l0 tit
2770 character*9 zipI2780 character*5 ser
2790 character*2 gsl~st
2800 character*(*) st
2810 integer nca,mad,nflds,adr
2820 logical adflag
2830 parameter (ma-26,nflds-11)
2840 caimmon /asmblk/nca,sop(m-d) ,coa(nai) ,cit(mki) ,ln(mad) ,boc(mad),
2850 & gn(md) ,tit(md) ,zip(md) ,ser(md) ,gsl(md) ,st(md),
2860 & adflag(mad,nflds)
2870

*2880 if (air.lt.1.r.adr.gt.mad) call ueaida~las',1setcoa')
2890 coa(adr)=str

*2900 adflag(adr,3)=.true.
2910 return
2920 end

SOFIVARE ENOINLERING PRINCIPLES 13-65
14-25 July 1980

SEC. 13 /MILITARY ADDRESS SYSTEM (MADDS)

2930*
2940 *asm
2950*
2960 *set given-names field of adr to str
2970*
2980 subroutine setgn (adr,str)
2990 implicit
3000 character*30 sop,coa
3010 character*25 cit,ln
3020 character*20 boc,gn
3030 character*10 tit
3040 character*9 zip
3050 character*5 ser
3060 character*2 gsl ,st
3070 character*(*) st
3080 integer nca,md,nflds,adr
3090 logical adflag
3100 parameter (mai=26,nflds-l1)
3110 caimon /asmblk/nca,sop(md) ,coa(mad) ,cit(md) ,1n(md) ,boc(mad),
3120 & gn(mad) ,tit(md) ,zip(md) ,ser(md) ,gs1(md) ,st(nd),
3130 & adflag(mad,nflds)
3140
3150 if (adr.1t.1.or.adr.gt.mad) call ueaida(las','setgn')
3160 gn(adr)=str
3170 adflag(ar,4)=.true.
3180 return
3190 end

13-66 SOFTWARE ENGINETER ING PRINCIPLES
14-25 July 1980

IIADDS Program Listinigs IDoc. MADDS.9

3200 *
3210 * amu
3220 *
3230 * set gs-level field of adr to str
3240 *
3250 subroutine setgsl(adr,str)43260 imnplic it
3270 character*30 sop,coa.
3280 character*25 cit,ln
3290 character*20 boc,gn
3300 character*l0 tit
331.0 character*9 zip
3320 character*5 ser
3330 character*2 gsl ,st
3340 character*(*) st
3350 integer nca,mad,nflds,adr
3360 logical adflag
3370 parameter (md-26,nflds-11)
3380 commnon /aaiiblk/nca,sop(mac) ,coa(md) ,cit(md) ,ln(mad) ,boc(mad),
3390 & gn(md) ,tit(md) ,zip(md) ,ser(md) ,gs1(md) ,st(mad),

*3400 & adflag (mad,nfJlds)
3410
3420 if (air.lt.l.or.adr.gtmad) call ueaida('asn','setgsl')
3430 gsl (adr) =str
3440 adflag(ar,5)-.true.
3450 return
3460 end

SOFTWARE ENGINEERING PRINCIPLES 13-67
14-25 July 1980

____li

SEC. 13 /MILITARY ADDRESS SYSTEM (HADDS)

* 3470*
3480* asn

* 3490*
* 3500 *set last-name field of adr to str

3510 subroutine setin (adr,str)
3520 implicit
3530 charactper*30 sop,coa
3540 character*25 cit,ln
3550 character*20 boc,gn
3560 character*l0 tit
3570 character*9 zip

*3580 character*5 ser
3590 character*2 gsl,st
3600 character*(*) st
3610 integer nca,mad,nflds,adr
3620 logical adflag
3630 parameter (zai=26,nfJlds=l1)
3640 catimon /asmblk/nca, sop (mad) ,coa (mad) , cit (mad), ln(mad) ,boc (ma),
3650 & gn(md) ,t it(mad) ,zip(md) ,ser(mad) ,gsl(md) ,st(mad),
3660 & adflag(mad,nflds)

* 3670
3680 if (adr.lt.1.or.adr.gt.mad) call ueaida('asn','setln')
3690 ln(adr)-str
3700 adflag(ar,6)=.true.
3710 return
3720 end

13-68 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

MADDS Proaram Listings IDoc. MADDS.9

3730 *
3740 * asu
3750 *
3760 * set service field of adr to str
3770 *
3780 subroutine setser(adr,str)
3790 implicit
3800 character*30 sop,coa
3810 character*25 cit,ln
3820 character*20 boc ,gn
3830 character*l0 tit
3840 character*9 zip
3850 character*5 ser
3860 character*2 gjsl,st
3870 character*(*) st
3880 integer nca,mad,nflds,adr
3890 logical adflag
3900 parameter (mai=26,nflds=1l)
3910 cfam /asmblk/nca,sop(mad) ,coa(md) ,cit(md) ,ln(md) ,boc(mai),
3920 & gn(md) ,tit(md) ,zip(mai) ,ser(md) ,gsl(nad) ,st(mia),
3930 & adflag(mad,nflds)
3940
3950 if (adr.lt.l.or.adr.gt.mad) call ueaida('asn','setser')
3960 ser(adr)=str
3970 adflag(adr,7)=.true.
3980 return
3990 end

SOFTWARE ENGINEERING PRINCIPLES 13-69
14-25 July 1980

SEC. 13 /MILITARY ADDRESS SYSTEM (MADDS)I

* 4000*
4010 *asm

* 4020*
4030 *set street-or-post-office-box field of adr to str
4040*
4050 subroutine setsop(ar,stz)
4060 implicit
4070 character*30 sop,coa.
4080 character*25 cit,ln
4090 character*20 boc,gn
4100 character*10 tit
4110 ctlaracter*9 zip
4120 character*5 ser
4130 character*2 gsl ,st
4140 character*(*) str
4150 integer nca,md,nflds,adr
4160 logical df lag
4170 parameter (mai=26,nflds-1l)
4180 caunon /asnblk/nca,sop(md) ,coa(md) ,cit(md) ,ln(md) ,boc(miad),
4190 & gn(md) ,tit(md) ,zip(md) ,ser(md) ,gs1(md) ,st(mai),

*4200 & adflag (mad, n fds)
4210
4220 if (adr.1t.l.or.adr.gt.mad) call ueaida('asu','setsop')
4230 sop(adr)-str
4240 adflag(ar,8)-.true.

*4250 return
4260 end5

13-70 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

MADDS Program Listings /Doc. MADDS.9

4270 *
4280 * asi
4290 *
4300 * set state field of adr to str
4310 *
4320 subroutine setst (dr ,str)
4330 implicit
4340 character*30 sop,coa
4350 character*25 cit,ln
4360 character*20 boc,gn
4370 cbaracter*10 tit
4380 character*9 zip
4390 character*5 ser
4400 character*2 gsl,st
4410 character*(*N str
4420 integer nca,mad,nflds,adr
4430 logical adflag
4440 parameter (md=26,nflds-11)
4450 caumon /asmblk/nca,sop(md) ,coa(md) ,cit(mai) ,ln(mad) ,boc(ma3),
4460 & gn(md) ,tit(md) ,zip(md) ,ser(mad) ,gsl(md) ,st(md),
4470 & adflag (ma,nflds)

A 4480
4490 if (adr.1t.l.or.adr.gt.mad) call ueaida('asn','setst')
4500 st(adr)-str
4510 adflag(ar,9)=.true.
4520 return
4530 end

SOFTWARE ENGINEERING PmRINILES 13-71
14-25 July 1980

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

4540*
4550* asn
4560 *
4570 * set title field of adr to str
4580*
4590 subroutine settit(adr,str)
4600 implicit
4610 character*30 sopcoa
4620 character*25 cit,ln
4630 character*20 boc,gn
4640 character*10 tit
4650 character*9 zip
4660 character*5 ser
4670 character*2 gsl,st
4680 character*(*) str
4690 integer nca,mad,nflds,adr
4700 logical adflag

4710 parameter (mad=26,nflds-1l)
4720 cmnon /asmblk/nca,sop(mad) ,coa(mad) ,cit(mad) ,in(mad) ,boc(mad),
4730 & gn(mad) ,tit(mad) ,zip(mad) ,ser(mad) ,gsl (mad) ,st(mad),
4740 & adflag(mad,nflds)
4750
4760 if (adr.lt.l.or.adr.gt.mad) call ueaida('as n','settit')
4770 tit(adr) -str
4780 adflag(adr,i0)=.true.
4790 return
4800 end

13-72 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

MADDS Program Listings /Doc. MADDS.9

4810 *
4820 * asm
4830*

480* stzpcd il fart

4850 *
4860 ubroutine setzip(adr,str)
4870 implicit
4880 character*30 sop,coa
4890 character*25 cit,ln
4900 character*20 boc ,gn
4910 character*l0 tit
4920 character*9 zip
4930 character*5 ser
4940 character*2 gsl,st
4950 character* (*) str
4960 integer nca,mad,nflds,adr
4970 logical adflag
4980 parameter (md-26,nflds;-ll)
4990 caunn /asnblk/nca,sop(iad) ,coa(nad) ,cit(mai) ,ln(md) ,boc(rnaM),
5000 & gn(ird) ,tit(mnd) ,zip(mad) ,ser(md) ,gsl(md) ,st(mad),
5010 & adflag(mad, nflds)
r5020
5030 if (adr.1t.l.or.adr.gt.mad) call ueaida('asm' ,'setzip')
5040 zip(adr)=str
5050 adflag(adr,ll)=.true.

K5060 return
5070 end

SOFTWARE ENGINEERING PRINCIPLES 13-73
14-25 July 1980

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

5080 *
5090 * asm
5100 *
5110 * get branch-or-code field from adr
5120 *
5130 character*(20) function getboc(adr)
5140 implicit
5150 character*30 sop,coa
5160 character*25 cit,ln
5170 character*20 boc,gn
5180 character*10 tit
5190 character*9 zip
5200 character*5 ser
5210 character*2 gsl,st
5220 integer nca,mad,nflds,adr,j
5230 logical adflag
5240 parameter (mad=26,nflds=l)
5250 common /asnblk/nca,sop(mad) ,coa(mad) ,cit(mad) ,ln(mad) ,boc(mad),
5260 & gn(mad) ,tit(mad) ,zip(mad) ,ser(mad) ,gsl(mad) ,st(mad),
5270 & adflag (mad,nflds)
5280
5290 if (adr.lt.l.or.adr.gt.mad) call ueaida('asmn','getboc')
5300 if (adflag(adr,l)) go to 20
5310 do 10 j=l,nflds
5320 if (adflag(adr,j)) call ueadrp('asm','getboc')
5330 10 continue
5340 call ueadru('asmn','getboc')
5350 20 continue
5360 getboc=boc(adr)
5370 return
5380 end

13-74 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

- 36.. -&X

MADDS Program Listings/ Doc. MADDS.9

5390 *
5400 * asn
5410 *
5420 * get city field from adr
5430 *
5440 character*(25) function getcit(adr)
5450 implicit
5460 character*30 sop,coa
5470 character*25 cit,ln
5480 character*20 boc,gn
5490 character*10 tit
5500 character*9 zip
5510 character*5 ser
5520 character*2 gsl,st
5530 integer nca,mad,nflds,adr,l
5540 logical adflag
5550 parameter (mad=26,nflds=ll)
5560 cammon /asmblk/nca,sop(mad) ,coa(mad) ,cit(mad) ,ln(mad) ,boc(mad)
5570 & gn(mad) ,tit(mad) ,zip(mad) ,ser(mad) ,gsl(mad) ,st(mad),
5580 & adflag (mad,nflds)
5590
5600 if (adr.lt.l.or.adr.gt.mad) call ueaida('asm','getcit')
5610 if (adflag(adr,2)) go to 20
5620 do 10 j=l,nflds
5630 if (adfla(ar,j)) call ueadrp('asm','getcit')
5640 10 continue
5650 call ueadru('asm','getcit')
5660 20 continue
5670 getcit=cit(adr)
5680 return
5690 end

SOFTWARE ENGINEERING PRINCIPLES 13-75
14-25 July 1980

SEC. 13 /MILITARY ADDRESS SYSTEM (MADDS)

5700
5710 *asn

5720*
5730 *get commanax-or-activity field from air
5740*
5750 character*(30) function getcoa(adr)*15760 implicit
5770 cnaracter*30 sop,coa
5780 character*25 cit,ln
5790 character*20 boc,gn
5800 character*l0 tit
5810 character*9 zip
5820 character*5 ser
5830 character*2 gsl,st
5840 integer nca,,mad,nflds,adr,j
5850 logical adflag
5860 Parameter (mad=26,nflds=ll)
5870 caimmon /asnblk/nca,sop(mad) ,coa(mad) ,cit(mai) ,ln(mad) ,boc(mad),
5880 & gn(nad) ,tit(rnad) ,zip(mai) ,ser,.rnad) ,gsl(mad) ,st(rnad),
5890 & ad flag (nai,nflds)
5900
5910 if (adr.lt.l.or.adr.gt.mad) call ueaida('asn','getcoa')
5920 if (adflag(adr,3)) go to 20
5930 do 10 j=l,nflds
5940 if (adflag(adr,j)) call ueadrp('asn','getcoal)
5950 10 continue
5960 call ueadru('asn','getcoal)
5970 20 continue
5980 getcoa=coa(adr)
5990 return
6000 end

13-76 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

MADDS Program Listings /Doc. MADDS.9

6010 *
6020 * asm
6030 *
6040 * get given-names field from adr
6050 character*(20) function getgn(adr)
6060 implicit
6070 character*30 sop,coa
6080 character*25 cit,ln
6090 character*20 boc,gn
6100 character*l0 tit
6110 character*9 zip
6120 character*5 ser
6130 character*2 gsl,st
6140 integer nca,mad,nflds,air,j
6130 logical adflag
6160 parameter (md=26,nfldsl)
6170 common /asrlblk/nca,sop(mad) ,coa(mad) ,cit(mai) ,ln(mad) ,boc(mad) ,
o.±80 & gn(md) ,tit~mad) ,zip(mad) ,ser(mad) ,gsl (mad) ,st(mad),
6190 & ad flag (mad, nflds)
6200
6210 if (adr-lt.1.or.adr.gt.mad) call ueaida('asm','getgn')
6220 if (adflag(adr,4)) go to 20
6230 do 10 j1l,nflds
6240 if (adflag(adr,j)) call ueadrp(lasn','getgn')
6250 10 continue
6260 call ueadru('asm','getgn')
6270 20 continue
6280 getgn=gn(adr)
6290 return
6300 end

SOFTWARE ENGINEERING PRINCIPLES 13-77
14-25 July 1980

SEC. 13 /MILITARY ADDRESS SYSTEM (MADDS)

6310*
6320 *asn

6330*
6340 *get gs-level field from adr
6350*
6360 character*(2) function getgsl(adr)
6370 implicit
6380 character*30 sop,coa
6390 character*25 cit,ln
6400 character*20 boc,gn
6410 character*10 tit
6420 character*9 zip
6430 character*5 ser
6440 character*2 gsl ,st
6450 integer nca,mad,nflds,adr,j
6460 logical adflag
;470 narameter (ma=26,nflds=ll)
6480 caninon /asnblk/nca,sop(mad) ,coa(nid) ,cit~md) ,ln(mad) ,boc(mad),
6490 & gn(mad) ,tit(nad) ,zip(mad) ,ser(mad) ,gsl (md) ,st (mad),
6500 & adflag (mad,nflds)
6510
6520 if (adr.lt.1.or.adr.gt.mad) call ueaida(asm','getgsl')
6530 if (adflag(adr,5)) go to 20
6540 do 10 j-l,nflds
6550 if (adflag(adr,j)) call ueadrp('asii,'getgsl')
6560 10 continue
6570 call ueadru('asn','getgsl')
5580 20 continue
659u1 -g 31gsl(ad r)
66J)0 r,- curn
66D 6 *.nd

13-78 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

MADDS Program Listings /Doc. MADUDS.9

6620 *
6630 * asm
6640 *
6650 * get last-name field from adr
6660 *
6670 character*(25) function getln(adr)
6680 implicit
6690 character*30 sop,coa
6700 character*25 cit,ln
6710 character*20 boc,gn
6720 character*l0 tit
6730 character*9 zip
6740 character*5 ser
6750 character*2 gsl ,st
6760 integer nca,mad,nflds,ar,j
6770 logical adflag
4180 parameter (mai=26,nflds-ll)
6790 common /asmblk/nca,sop(mad) ,coa(mai) ,cit(mad) ,Ii(rnad) ,boc(mai),
6800 & gn(mad) ,tit(mad) ,zip(mad) ,ser(mad) ,gsl(mad) ,st(mad),
6810 & ad flag (mad, nflds)
6820
6830 if (adr.1t.l.or.adr.gt.mad) call ueaida('asm','getln')
6840 if (adflagcadr,6)) go to 20
6850 do 10 j-l,nflds
6860 if (adflag(air,j)) call ueadrp('asnm ,getln')
6870 10 continue
6880 call ueadru('as','getln')
6890 20 continue
6900 getln ln (adr)
6910 return

6920 end

SOFTWARE ENGINEERING PRINCIPLES 13-79
14-25 July 1980

d_ 1

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

6930 *
6940 * asm
6950 *
6960 * get service field from adr
6970 *
6980 character*(5) function getser(adr)
6990 implicit
7000 character*30 sop,coa
7010 character*25 cit,ln
7020 character*20 boc,gn
7030 character*10 tit
7040 character*9 zip
7050 character*5 ser
7060 character*2 gsl,st
7070 integer nca,mad,nflds,adr,j
7080 logical adflag
7090 parameter (mad=26,nflds=ll)
7100 common /asmblk/nca,sop(mad) ,coa(mad) ,cit(mad) ,ln(mad) ,boc(mad),
7110 & gn(rnad) ,tit(mad) ,zip(mad) ,ser (mad) ,gsl(mad) ,st (mad),
7120 & adflag (mad,nflds)
7130
7140 if (adr.lt.l.or.adr.gt.mad) call ueaida('asm','getser')
7150 if (adflag(adr,7)) go to 20
7160 do 10 j=l,nflds
7170 if (adflag(adr,j)) call ueadrp('asm','getser')
7180 10 continue
7190 call ueadru('asm','getser')
7200 20 continue
7210 getser=ser (adr)
7220 return
7230 end

13-80 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

MADDS Program Listings /Doc. MADDS.9

7240 *
7250 * asm
7260 *
7270 * get street-or-post-off ice-box field from adr
7280 *
7290 character*(30) function getsop(adr)
7300 implicit
7310 character*30 sop,coa
7320 character*25 cit,ln
7330 character*20 boc,gn
7340 character*l0 tit
7350 character*9 zip
7360 character*5 ser
7370 character*2 gsl,st
7380 integer nca,mad,nflds,dr,j
7390 logical adflag
7400 parameter (mac=26,nflds-11)
,..O com~mon /asnblk/nca,sop(md) ,coa(mW) ,cit(md) ,ln(mad) ,boc(md),

7420 & gn(mad) ,tit(rai),zip(md) ,ser(md) ,gsl(md) ,st(md),
7430 & adflag (mad;nflds)
7440
7450 if (adr.1t.l.or.adr.gt.mad) call ueaida('asm','getsop')
7460 if (adflag(adr,8)) go to 20
7470 do 10 j=l,riflds
7480 if (adflag(adr,j)) call uearp('asn,'getsop')
7490 10 continue
7500 call ueadru(Iasm','getsopl)
7510 20 continue
7520 getsop-sop(adr)
7530 return
7540 end

SOFTWARE ENGINEERING PRINCIPLES 13-8 1
14-25 July 1980

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

7550*
7560* asm
7570 *
7580 * get state field from adr
7590 *
7600 character*(2) function getst(adr)
7610 implicit
7620 character*30 sop,coa
7630 character*25 cit,ln
7640 character*20 boc,gn
7650 character*l0 tit
7660 character*9 zip
7670 character*5 ser
7680 character*2 gsl,st
7690 integer nca,mad,nflds,adr,j
7700 logical adflag
7710 parameter (mad26,nflds=ll)
7720 canon /asiblk/nca,sop(mad) ,coa(mad) ,cit(mad) ,ln(mad) ,boc(mad),
7730 & gn(mad) ,tit(mad),zip(mad) ,ser(mad) ,gsl(mad) ,st(mad),
7740 & adflag (mad,nflds)
7750
7760 if (adr.1t.l.or.adr.gt.mad) call ueaida('asm','getst')
7770 if (adflag(adr,9)) go to 20
7780 do 10 j-l,nflds
7790 if (adflag(adr,j)) call ueadrp('asm','getst')
7800 10 continue
7810 call ueadru('asm','getst')
7820 20 continue
7830 getst=st(adr)
7840 return
7850 end

13-82 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

____ ____ ___ ____ ____ ___ ____ ____ ___ ____ ____ ___ ___A-._ 0r

MADDS Program Listings / Doc. MADDS.9

7860 *

7870 * asm
7880 *
7890 * get title field from adr
7900 *
7910 character* (10) function gettit(adr)
7920 implicit
7930 character*30 sop,coa
7940 character*25 cit,ln
7950 character*20 boc,gn
7960 character*l0 tit
7970 character*9 zip
7980 character*5 ser
7990 character*2 gsl,st
8000 integer nca,mad,nflds,adr,j
8010 logical adflag
8020 parameter (mad=26,nflds=1l)
8030 cummon /asmblk/nca,sop(mad) ,coa(mad) ,cit(mad) ,ln (mad) ,oc(mad) ,
8040 & gn(mad) ,tit(mad) ,zip(mad) ,ser (mad) ,gsl(ma) ,st(mad),
8050 & adflag (mad ,nflds)
8060
8070 if (adr.lt.l.or.adr.gt.mad) call ueaida('asm','gettit')
8080 if (adflag(adr,l0)) go to 20
8090 do 10 j=l,nflds
8100 if (adflag(adr,j)) call ueadrp('asm','gettit')
8110 10 continue
8120 call ueadru('asm','gettit')
8130 20 continue
8140 gettit=tit(adr)
8150 return
8160 end

SOFTWARE ENGINEERING PRINCIPLES 13-83
14-25 July 1980

SEC. 13 /MILITARY ADDRESS SYSTEM (MADDS)

:1 8170*
8180 * s
8190*
8200 *get zip-code field from adr
8210
8220 character*(9) functi'on getzip(adr)
82.30 implicit
8240 character*30 sop,coa
8250 character*25 cit,ln
8260 character*20 boc,gn
8270 character*10 tit
8280 character*9 zip
8290 character*5 ser
8300 character*2 gsl,st
8310 integer nca,rnad,nflds,adr,j
8320 logical adflag
8330 parameter (mad-26,nflds-11)
8340 ccnmon /asmblk/nca,sop(mad) ,coa (mad) ,cit (ma:d) ,ln (mad) ,boc(mad),
8350 & gn(mad) ,tit(mad) ,zip(mad) ,ser(mai) ,gsl (mad) ,st (mad),
8360 & ad flag (mad, nflds)
8370
8380 if (adr.1t.l.or.adr.gt.mad) call ueaida('asn','getzip')
8390 if Cadflag(adr,l1)) go to 20
8400 do 10 j=l,nflds
8410 if (adflag(adr,j)) call ueadrp('asn','getzip')
8420 10 continue
8430 call ueadru(lasm','getzip')
8440 20 continue
8450 getzip=zip(adr)
8460 return
8470 end

13-84 SOFTWARE ENGINEERING PR1NCIPLES
14-25 July 1980

MADDS Program Listings / Doc. MADDS.9

8480 *
8490 * chin
8500 *
8510 * define internal character comparison code
8520 *
8530 block data
8540 integer mask,intchr
8550 common /chmblk/itchr(128)
8560 data intchr/0,-i, -2,-3,-4,-5,-6,-7,-8,-9,-10,-11,
8570 &-12,-13,-14,-15,-16,-17,-18,-19,-20,-21,-22,-23,-24,
8580 &-25,-26,-27,-28,-29,-30,-31,1,-32,-33,-34,-35,-36,
8590 &-37,-38,-39,-40,-41,-42,-43,-44,-45,-46,28,29, 30,31,
8600 &32,33,34,35,36,37,-47,-48,-49,-50,-51,-52,-53,2,3,
8610 &4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,
8620 &23,24,25,26,27,-54,-55,-56,-57,-58,-59,2,3,4,5,6,7,
8630 &8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
8640 &26,27,-60,-61,-62,-63,-64/
8650 end
8660 *
8670 * chin
8680 *
8690 * character equality test
8700 *
8710 logical function chareq(chl,ch2)
8720 character*l chl,ch2
8730 integer mask, intchr, intl, int2, ichar
8740 ccmnmon /chmblk/intchr(128)
8760
8770 intl=ichar (chl)
8780 int2=ichar (ch2)
8790 chareq=intchr (intl+l) .eq. intchr (int2+1)
8800 return
8810 end
8820 *
8830 * chm
8840 *
8850 * character less-than comparison
8860 *
8870 logical function charlt(chl,ch2)
8880 character*l chl,ch2
8890 integer mask, intchr, intl, int2, ichar
8900 common /chmblk/intchr(128)
8910
8930 intl=ichar (chl)
8940 int2=ichar (ch2)
8950 if (intchr(intl+l).le.0) call uechlt('chm','charlt')
8960 if (intchr(int2+1).le.0) call uechlt('chm','charlt')
8970 charlt-intchr(intl+l) .lt.intchr(int2+l)
8980 return
8990 end

SOFTWARE ENGINEERING PRINCIPLES 13-85
14-25 July 1980

.iL , , H , --

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

9000
9010 *idm

9020 *

9030 * initialize
9040 *
9050 block data
9060 implicit
9070 character*60 buffer
9080 integer bufpos,bufsiz,unit
9090 logical idop
9100 common /idmblk/bufpos,idop,buffer
9110 data bufpos/60/idop/.false./
9120 end
9130 *
9140 * idm
9150 *
9160 * open input device
9170 *
9180 subroutine openid
9190 implicit
9200 character*60 buffer
9210 integer bufpos,bufsiz,unit
9220 logical idop
9230 parameter(unit=5)
9240 common /idmblk/bufpos,idop,buffer
9250
9260 if (idop)call ueropn('idm','openid')
9270 open(unit, "td ata26 ")

9280 idop=.true.
9290 return
9300 end
9310 *
9320 * idm
9330 *
9340 * close input file

9350 *
9360 subroutine closid
9370 implicit
9380 character*60 buffer
9390 integer bufpos,bufsiz,unit
9400 logical idop
9410 parameter (unit=5)
9420 co~mon /idmblk/bufpos,idop,buffer
9430
9440 if (.not.idop) call uercls('idm','closid')
9450 close (unit)
9460 idopa.false.
9470 return
9480 end

13-86 SOMTARE ENGINEERING PRINCIPLES
14-25 July 1980

MADDS Program Listings / Doc. MADDS.9

9490 *
9500 * idin
9510 *

9520 * read character from input stream
9530 *
9540 * this f4p compiler treats an end-of-file condition as an
9550 * device error condition. so there is no implementation

9560 * of the device error ue.
9570 *
9580 character*1 function rdchar

9590 implicit
9600 character*l getchr
9610 character*60 buffer
9620 integer bufpos,bufsiz,unit
9630 logical idop
9640 parameter (unit=5)
9650 common /idmblk/bufpos,idop,buffer
9660
9670 if (.not.idop) call uewrcl('idm' ,'rdchar')
9680 if (bufpos.lt.60) go to 10
9690 read (unit,100,err=30,end=20) buffer
9700 bufpos=O
9710 10 bufpos=bufpos+l
9720 rdchar=getchr (buffer,bufpos)
9730 return
9740 20 call uenoch('idm','rdchar')
9750 return
9760 30 call uedver('idml,lrdcharl)
9770 return
9780 100 format (a60)
9790 end

SOFTWARE ENGINEERING PRINCIPLES 13-87
14-25 July 1980

4, ~v~~-4---7

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

9800 *
9810 * ipm
9820 *

9830 * read and store input addresses
9840 *

9850 subroutine rdads
9860 impl icit
9870 character*20 coa,rdfld,endstr
9880 integer nads,maxads,mads
9890 logical streq
9900 data endstr **********************
9910
9920 call openid
9930 mads--maxads()
9940 nads=0
9950 1 coa=rdfld(20)
9960 if (streq(coa,endstr)) go to 20
9970 nads=nads+l
9980 if (nads.gt.mads) call ueadov('ipm','rdads')
9990 call setcoa (nads,coa)
10000 call setsop (nads,rdfld(20))
10010 call setcit (nads,rdfld(20))
10020 call setst (nads,rdfld(2))
10030 call setzip (nads,rdfld(7))
10040 call settit (nads,rdfld(4))
10050 call setgn (nads,rdfld(20))
10060 call setIn (nads,rdfld(15))
10070 call setboc (nads,rdfld(20))
1.080 call setgsl (nads,rdfld(2))
10090 call setser (nads,rdfld(4))
10100 go to 1
10110 20 call verads
10120 call closid
10130 return
10140 end
10130 *
10160 * ipm
10170 *
10180 * read and create an address field string
10190 *
10200 character *(*) function rdfld(length)
10210 implicit
10220 character*l chr, rdchar
10230 integer length,i
10240
10250 rdfld="
10260 do 10 i-l,length
10270 call setchr(rdfld,i,rdcharo)
10280 10 continue
10290 return
10300 end

13-88 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

MADDS Program Listings /Doc. XADDS.9

10310 *

10320 * man
10330 *
10340 pr og ram man
10350 implicit
10360 integer i
10370 character *1 getchr
10380 character *2 oglim
10390 character *3 prezip
10400
10410 call initas
10420 call openod
10430 call newlin
10440 call wrchar (I '
10450 call newlin
10460 do 106 i=1,23
10470 call wrchar(getchr C starting address input.' ,i))
10480 106 continue
10490 call rdads
10500 call newlin
10510 call wrchar(' ')
10520 call newlin
10530 do 107 i=1,25
10540 call wrchar(getchr('address reading complete.',i))
110550 107 continue
10560 prezip = '203'
10570 call newlin
10580 call drchar(' '
10590 call newlin
10600 do 108 i=1,18
10610 call wrchar(getchr('output of area is:',i))

10620 108 continue
10630 call area(prezip)
10640 oglim = '10'
10650 call newlin
10660 call wrchar(' ')
10670 call newlin
10680 do 109 i=1,18
10690 call wrchar(getchr('output of rank is:',i))
10700 109 continue
10710 call rank(oglim)
10720 call newlin
10730 call wrchar(' ')
10740 call newlin
10750 do 110 i=1,17
10760 call wrchar(getchr(lend of madds run.' ,i))
10770 110 continue
10780 call newlin
10790 call closod
10800 stop
10810 end

SOFTWARE ENGINEERING PRINCIPLES 1i3-89

14-25 July 1980

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

10820 * odin
10830 *
10840 * initialize output device
10850 *
10860 block data
10870 implicit
10880 character*60 line
10890 integer linlen, linpos
10900 logical odop
10910 common /odmblk/linpos,odop,line
10920 data linpos/l/,odop/.false./
10930 end
10940 *
10950 * odi
10960 *
10970 * open output device
10980 *
10990 subroutine openod
11000 implicit
11010 character*60 line
11020 integer linlen,linpos
11030 logical odop
11040 common /odmblk/linpos,odop,line
11050
11060 if (odop) call ueropn('od','openod')
11070 odoc=.true.
11080 return
11090 end
11100 *
11110 * odn
11120 *
11130 * close output file
11140 *
11150 subroutine closod
11160 implicit
11170 character*60 line
11180 integer linpos,linlen
11190 logical odop
11200 common /odmblk/l inpos ,odop,l ine
11210
11220 if (.not.odop) call uercls('odm','closod')
11230 odop=.false.
11240 return
11250 end

13-90 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

MADDS Program Listings / Doc. MADDS.9

11260 *
11270 * odm
11280 *
11290 * write character to output stream
11300 *
11310 subroutine wrchar(chr)
11320 implicit
11330 character*l chr
11340 character*60 line
11350 integer linpos, linlen
11360 logical odop
11370 common /odmblk/linpos,odop,line
11380
11390 if (.not.odop) call uewrcl('od ','wrchar')
11400 call setchr(line,linpos,chr)
11410 linpos=linpos+l
11420 if (linpos.le.60)return
11430 write(0,100,err=20) line
11440 linpos=l
11450 return
11460 20 call uedver('odm','wrchar')
11470 return
11480 100 format (lx,a60)
11490 end
11500 *
11510 * odm
11520 *
11530 * write current line unless empty and get new line
11540 *
11550 subroutine newlin
11560 impl ic it
11570 character*60 line,getchr
11580 integer linpos,linlen,i
11590 logical odop
11600 common /odmblk/linpos,odop,line
11610
11620 if (.not.odop) call uewrcl('om','wrchar')
11630 if (linpos.eq.l) return
11640 write (0,100,err=20) (getchr (line,i) ,i=1,1iL-pos-1)
11650 linpos=l
11660 return
11670 20 call uedver('odn ,'newlin')
11680 return
11690 100 format (lx,60a)
11700 end

SOFTWARE ENGINEERING PRINCIPLES 13-91
14-25 July 1980

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

11710 *
11720 * opm
11730 *
11740 * write address adr
11750 *
11760 subroutine wradr(adr)
11770 implicit
11780 character*30 getcoa
11790 character*20 getcit,getln
11800 character*20 getgn,getboc
11810 character*l0 gettit
11820 character*9 getzip
11830 character*2 getst
11840 integer maxads,getnca,mads,adr,i
11850
11860 mads--maxads()
11870 if (adr.1t.l.or.adr.gt.mads)
11880 & call ueaida('opt','wrads')
11890 if (getnca().lt.adr.ard.adr.le.mads)
11900 &call ueaidu('opm','wradr')
11910 call newlin
11920 call wrfld(gettit(adr))
11930 call wrchar(' ')
11940 call wrfld(getgn(adr))
11950 call wrchar(' ')
11960 call wrfld(getln(adr))
11970 call newlin
11980 call wrfld(getboc(adr))
11990 call newlin
12000 call wrfld(getcoa(adr))
12010 call newlin
12020 call wrfld(getcit(adr))
12030 call wrchar(',')
12040 call wrchar(' ')
12050 call wrfld(getst(adr))
12060 call wrchar(' ')
12070 call wrfld(getzip(adr))
12080 call newlin
12090 do 10 i=1,5
12100 call wrchar(' ')
12110 call newlin
12120 10 continue
12130 return
12140 end

13-92 SOFTWARE ENGINEERING PRINCIPLES

14-25 July 1980

MADDS Program Listings /Doc. MADDS.9

12150 *
12160 * opm
12170 *
12130 * write a field
12190 *
12200 subroutine wrfld(str)
12210 implicit
12220 character *(*) str
12230 character*1 getchr
12240 integer nblank,i,n
12250 n=nblank(str)
12260 if (n.gt.0) go to 5
12270 do 4 i=1,5
12280 4 call wrchar('*')
12290 return
12300 5 do 10 i=l,n
12310 call wrchar(getchr(str,i))
12320 10 continue
12330 return
12340 end

SOFTWARE ENGINEERING PRINCIPLES 13-93

14-25 July 1980

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

12350 * ssm
12360 *
12370 * replace character at position pos of str by chr
12380 *
12390 subroutine setchr(str,pos,chr)
12400 implicit
12410 character *1 chr
12420 character *(*) str
12430 integer pos,len
12440 if (pos.it.l.or.pos.gt.len(str)) call uespos('ssm','setchr')
12450 str (pos:pos) =chr
12460 return
12470 end
12480 *
12490 * ssn
12500 *
12510 * get character at position pos of str
12520 *
12530 character *1 function getchr(str,pos)
12540 implicit
12550 character *(*) str
12560 integer len,pos
12570 if (pos.lt.l.or.pos.gt.len(str)) call uespos('ss ','getchr')
12580 getchr=str (pos:pos)
12590 return
12600 end
12610 *
12620 * ssn
12630 *
12640 * create substring of sir
12650 *
12660 character *(*) function substr(str,pos,.ength)
12670 implicit
12680 character *(*) str
12690 integer pos,length, len, strlen, uppos
12700 strlen = len(str)
12710 uppos = pos+length-1
12720 if (pos.lt.l.or.pos.gt.strlen) call uespos('ssn','substr')
12730 if (length.lt.O.or.uppos.gt.strlen)
12740 &call ueslen('ssn','substr')
12750 substr = " "
12760 if (length.eq.0) return
12770 substr-str (pos:uppos)
12780 return
12790 end

13-94 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

MADDS Program Listings / Doc. MADDS.9

12800 *
12810 * ssm
12820 *
12830 * string equality test
12840 *
12850 logical function streq(strl,str2)
12860 implicit
12870 character*(*) strl,str2
12880 integer l,len,ll,12,min,i
12890 logical chareq
12900 ll=len (strl)
12910 12=len(str2)
12920 1--min(11,12)
12930 streq=.false.
12940 do 10 i=l,l
12950 if (.not. chareq(strl(i:i),str2(i:i)))return
12960 10 continue
12970 if (11-12) 100,200,300
12980 100 do 110 i=11+1,12
12990 if (.not.chareq(str2(i:i) ," "))return
13000 110 continue
13010 streq=.true.
13020 return
13030 200 streq=.true.
13040 return
13050 300 do 310 i=12+1,11
13060 if (.not.chareq(strl(i:i)," "))return
13070 310 continue
13080 streq- .true.
13090 return
13100 end

SOFTWARE ENGINEERING PRINCIPLES 13-95

14-25 July 1980

___________________V

SEC. 13 I MILITARY ADDRESS SYSTEM (MADDS)

13110 *
13120 * ueh
13130 *
13140 * data definitions for ue handlers
13150 *
13160 block data
13170 implicit
13180 character*3 mids
13190 integer nmods
13200 parameter (rmods=9)
13210 common /uehblk/mids(rmods)
13220 data mids/'apml, Iasm' , cn,l m,lim~rclldllp

13230 &'ssm'/
13240 end
13250 *
13260 * ueh
13270 *
13280 * handler of ue: address storage capacity overflow
13290 *
13300 subroutine ueadov(mdid,fnid)
13310 implicit
13320 character*3 mids
13330 character*(*) mdid,fnid
13340 i.nteger nmcds,j
13350 parameter (mods=9)
13360 common /uehblk/mids(rmods)
13370
13380 do 20 j=l,rmods
13390 if (mdid.eq.mids(j)) go to 30
13400 20 continue
13410 call uemidu('ueh','adcv')
13420 30 write(0,100) fnid,mdid
13430 100 format (/' *** the ue: addresss storage capacity overflow '/
13440 &' detected in function ',a,' of module ',a,'.'/
13450 &' execution terminated.')
13460 call error (" ")
13470 stop
13480 end

13-96 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

* L T

MADDS Program Listings /Doc. MADDS.9

13490 *
13500 * ueh
13510 *
13520 * handler for ue: partially defined address
13530 *
13540 subroutine ueadrp(mdid,fnid)
13550 implicit
13560 character*3 mids
13570 character*(*) mdid,fnid
13580 integer nmods,j
13590 parameter (rmods=9)
13600 cammon /uehblk/mids(rnmods)
13610
13620 do 20 j=l,rmods
13630 if (mdid.eq.mids(j)) go to 30
13640 20 continue
13650 call uemidu('ueh','adrp')
13660 30 write(0,l00) fnid,mdid
13670 100 format (/' *** the ue: partially defined address '/
13680 &' detected in function ',a,' of module ',a,'.'/
13690 &' execution terminated.')
13700 call error (" ")
13710 stop
13720 end
13730 *
13740 * ueh
13750 *
13760 * handler for ue: undefined address
13770 *
13780 subroutine ueadru(mdid,fnid)
13790 implicit
13800 character*3 mids
13810 character*(*) mdid,fnid
13820 integer nmods,j
13830 parameter (rmods=9)
13840 common /uehblk/mids(rnmods)
13850
13860 do 20 j=l,nmods
13870 if (mdid.eq.mids(j)) go to 30
13880 20 continue
13890 call uemidu('ueh','adru')
13900 30 write (0,100) fnid,mdid
13910 100 format (/' *** the ue: undefined address '/
13920 &' detected in function 'a,' of module ',a,'.'/
13930 &' execution terminated.')
13940 call error (" ")
13950 stop
13960 end

SOFTWARE ENGINEERING PRINCIPLES 13-97
14-25 July 1980

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

13970 *
13980 * ueh
13990 *
14000 * handler for ue: absurJ address identifier
14010 *
14020 subroutine ueaida(mdid,fnid)
14030 implicit
14040 character*3 mids
14050 character*(*) mdid,fnid
14060 integer nmods,j
14070 parameter (rinods=9)
14080 common /uehblk/mids(nmods)
14090
14100 do 20 j=l,nrnods
14110 if (mdid.eq.mids(j)) go to 30
14120 20 continue
14130 call uemidu('ueh','aida')
14140 30 write (0,100) fnid,mdid
14150 100 format (/' *** the ue: absurd address identifier '/
14160 &' detected in function ',a,' of module ',a,'.'/
14170 &' execution terminated.')
14180 call error (" ")
14190 stop
14200 end
14210 *
14220 * ueh
14230 *
14240 * handler for ue: unassigned address identifier
14250 *
14260 suoroutine ueaidu(mdid,fnid)
14270 implicit
14280 character*3 mids
14290 character*(*) mdid,fnid
14300 integer nmods,j
14310 parameter (rmods9)
14320 cammon /uehblk/mids(rmods)
14330
14340 do 20 j=l,ruods
14350 if (mdid.eq.mids(j)) go to 30
14360 20 continue
14370 call uemidu('ueh','aidu')
14380 30 write (0,100) fnid,mdid
14390 100 format (/' *** the ue: unassigned address identifier '/
14400 &' detected in function ',a,' of module ',a,'.'/
14410 &' execution terminated.')
14420 call error (" ")
14430 stop
14440 end

13-98 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

-E- . - - -....- - -~~

MADDS Program Listings /Doc. MADDS.9

14450 *
14460 * ueh
14470 *
14480 * handler for ue: state of asm incorrect
14490 *
14500 subroutine ueasmi(mdid,fnid)
14510 implicit
14520 character*3 mids
14530 character*(*) mdid,fnid
14540 integer nmods,j
14550 parameter (rinods=9)
14560 common /uehblk/mids(rnods)
14570
14580 do 20 j=l,nnods
14590 if (mdid.eq.mids(j)) go to 30
14600 20 continue
14610 call uemidu('ueh',' asi')
14620 30 write (0,100) fnid,mdid
14630 100 format (' *** ue: state of asn incorrect '/
14640 &' detected in function ',a,' of module ',a,'.'/
14650 &' execution terminated.')
14660 call error (" ")
14670 stop
14680 end
14690 *
14700 * ueh
14710 *
14720 * handler for ue: undefined character comparison
14730 *
14740 subroutine uechlt(mdid,fnid)
14750 implicit
14760 character*3 mids
14770 character*(*) mdid,fnid
14780 integer nmods,j
14790 parameter (rmnods=9)
14800 common /uehblk/mids(rrnods)
14810
14820 do 20 j=l,ruiods
14830 if (mdid.eq.mids(j)) go to 30
14840 20 continue
14850 call uemidu('ueh','chlt')
14860 30 write (0,100) fnid,mdid
14870 100 format (/' *** the ue: undefined character comparison '/
14880 &' detected in function ',a,' of module ',a,'.'/
14890 &' execution terminated.')
14900 call error (" ")
14910 stop
14920 end

SOFTWARE ENGINEERING PRINCIPLES 13-99

14-25 July 1980

SEC. 13 IMILITARY ADDRESS SYSTEM (MADDS)

14930*
A4940 *ueh

14950*
14960 *handler for ue: device error
14970*
14980 subroutine uedver(rndid,fnid)
14990 implicit
15000 character*3 mids
15010 character*(*) rrdid,fnid
15020 integer nods,j
15030 garameter (rnods=9)
15040 canrnon /uehblk/ mids(riTnods)
15050
15060 do 20 j=1,nmods
15070 if (rdid.eq.mids(j)) go to 30
15080 20 continue
13090 call uemiJdu(1ueh','dver')
15100 30 write (0,100) fnid,mdid
15110 100 format (7' ** the ue: device error '
15120 &1 detected in function ',a,' of module 'a,'.'!
15130 &1 execution terminated.')
15140 call error(")
15150 s top
15160 end
15170 *
15180 * ueh
15190 *
15200 * handler for ue: non-existent module identifier
13 2.0 *
15220 subroutine uemnidu(,,ndid,fnid)
15230 implicit
1240 character*(*) mdid,fnid
15250 30 write (0,100)fnidamdid
15260 100 format (P~ ** the ue: non-existent module identifier '
15270 &1 detected in function ',a,' of module 'a,'.'!
15280 V' execution terminated.')
15290 call errcr ""
15300 stop
15310 end

13-100 SOFTARE ENGINEERING PRINCIPLES

14-25 July 1980

MADDS Program Listings /Doc. YAfDDS.9

15320 *
15330 * ueh
15340 *
15350 * handler for ue: number of complete addresses undefined

15360 *
15370 subroutine uencau(mdid,fnid)
15380 implicit
13390 character*3 mids
15400 character*(*) mdid,fnid
15410 integer nmods,j
13420 parameter (nmods=9)
15430 common /uehblk/mids(mods)
15440
15450 do 20 j=l,rnmods
13460 if (mdid.eq.mids(j)) go to 30
15470 20 continue
15480 call uemidu('ueh','ncau')
15490 30 write (0,100) fnid,mdid
15500 100 format (/' *** the ue: number of complete addresses undefined '/
15510 &' detected in function ',a,' of module ',a,'.'/
15520 &' execution terminated.')
13530 call error (" ")
15540 stop
15550 erd
15560 *
15570 ueh
15580 *

15590 * handler for ue: no chars available on input device
15600 *
13610 subroutine uenoch(mdid,fnid)
15620 implicit
15630 character*3 mids
15640 character*(*) mdid,fnid
15650 integer rnmods,j
15660 parameter (rmod=9)
15670 common /uehblk/mids(nmods)
15680
13690 do 20 j=l,rmods
15700 if (mdid.eq.mids(j)) go to 30
15710 20 continue
15720 call uemidu('ueh' ,'noch')
15730 30 write (0,100) fnid,mdid
15740 100 format (/' *** the ue: no chars available on input device '/
15750 &' detected in functi3n ',a,' of module ',a,'.'/
15760 &' execution terminated.')
15770 call error (" ")
15780 stop
15790 end

SOFTWARE ENGINEERING PRINCIPLES 13-101

14-25 July 1980

SEC. 13 / MILITARY ADDRESS SYSTEM (MADDS)

13800 *
15810 * ueh
13820 *
15830 * handler for ue: 0-grade level < 1 or > 10
15840 *
15850 subroutine ueogl(mdid,fnid)
15860 implicit
15870 character*3 mids
15880 character*(*) mdid,fnid
15890 integer nmods,j
15900 parameter (mncds=9)
15910 cammon /uehblk/mids(rnods)
15920
15930 do 20 j=l,rinods
15940 if (mdid.eq.mids(j)) go to 30
15950 20 continue
15960 call uemidu('ueh','ogl')
15970 30 write (0,100) fnid,mdid
15980 100 format (/' *** the ue: 0-grade level < 1 or > 10 '/
15990 &' detected in function ',a,' of module ',a,'.'/
16000 &' execution terminated.')
16010 call error (" ")

16020 stop
16030 end
16040 *
16050 * leh
16060 *
16070 * handler for ue: redundant device closing
16080 *
16090 subroutine uercls(mdid,fnid)
16100 implicit
16110 character*3 mids
16120 character*(*) mdid,fnid
16130 integer nmds,j
16140 carameter (rnods=9)
16150 common /uehbik/mids(rnods)
16160
16170 do 20 j=l,nmods
16180 if (mdid.eq.mids(j)) go to 30
16190 20 continue
16200 call uemidu('ueh','rcls')
16210 30 write (0,100) fnid,mdid
16220 100 format (/' *** the ue: redundant device closing I/
16230 &' detected in function ',a,' of module ',a,'.'/
16240 &' execution terminated.')
16250 call error C" ")
16260 stop
16270 end

13-102 SOFTWARE ENGINEERING PRTNCILES
14-25 July 1980

MADDS Program Listings /Doc. MADDS.9

16280 *
16290 * ueh
16300 *
16310 * handler for ue: redundant devi*e opening

16320 subroutine ueropn(mdid,fnid)
16330 implicit
16340 character*3 mids
16350 character*(*) ndid,fnid
16360 integer nmods,j
16370 parameter (rnods=9)
16380 common /uehblk/mids(rmods)
16390
16400 do 20 j=l,nmods
16410 if (mdid.eq.mids(j)) go to 30
16420 20 continue
16430 call uemidu('ueh','ropn')
16440 30 write (0,100) fnid,mdid
16450 100 format (/' *** the ue: redundant device opening '/
16460 &' detected in function ',a,' of module ',a,'.'/
16470 &' execution terminated.')
16480 call error (" ")
16490 stop
!3500 end
16510 *
16520 * ueh
16530 *
16540 * handler for ue: substring length illegal
16550 *
16560 subroutine ueslen(mndid,fnid)
16570 implicit
16580 character*3 mids
16590 character*(*) rdid,fnid
16600 integer nmods,j
16610 parameter (rnods=9)
16620 camnon /uehblk/mids (rmods)
16630
16640 do 20 j=l,nmods
16650 if (mdid.eq.mids(j)) go to 30
16660 20 continue
16670 call uemidu('ueh','slen')
16680 30 write (0,100) fnid,mdid
16690 100 format (/' *** the ue: substring length illegal '/
16700 &' detected in function ',a,' of module ',a,'.'/
16710 &' execution terminated. ')
16720 call error (" ")
16730 stop
16740 end

SOFTWARE ENCINEERING PRINCIPLES 13-103

14-25 July 1980

L-r

SEC. 13 /MILITARY ADDRESS SYSTEM (MADDS)

16750*
16760 *ueh

16770*
16780 *handler for ue: string character position illegal
16790*
16800 subroutine uespos(mdid,inid)
16810 implicit
16820 character*3 mids
16830 character*(*) ,ndid,fnid
16840 integer namods,j
16850 parameter (rnxs=9)
16860 ccommon /ueL)lk/m.ids(rinods)
16870
16880 do 20 j=1,nmods
16890 if (mdid.eq.mids(j)) go to 30
16900 20 continue
16910 call jemidu('ueh','spos')
16920 30 write (0,100) fnid,rndid
16930 100 format (/1 ** the ue: string character position illegal '
16940 V' detected in function ',a,' of module ',a,'.'/
16950 V' execution terminated.')
16960 call error ")
16970 stop
16980 end
16990 *
17000 * ueh
17010 *
17020 * handler for ue: write/read on closed device
17030 *
17040 subroutine uewrcl(mdid,fnid)
17050 imolicit
17060 character*3 mids
17070 character*(*) ndid,fnid
17080 integer -mds,j
17090 parameter (rinos=9)
17100 comimon /uehblk/mids(rinos)
17110
17120 do 20 j=l,rnods
17130 if (mdid.eq.midsj)) go to 30
17140 20 continue
17150 call uemidu('ueh','wrcl')
17160 30 write (0,100) fnid,mdid
17170 100 format (' the ue: write/read on closed device '
17180 &1 detected in function ',a,' of module 'a''
17190 &1 execution terminated.')
17200 call error(")
17210 stop
17220 end

13-104 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

MADDS Program Listings /Doc. MAflDS.9

1-7230 *
417240 * ueh

17250 *
17260 * handler for ue: zip area part not 3 de* digs
17270 *
17280 subroutine uezip(mdid,fnid)
17290 implicit
17300 character*3 mids
17310 character*(*) rrdid,fnid
17320 integer nmods,j
17330 parameter (rnos=9)
17340 common /uehblk/mids (miods)
17350
17360 do 20 jl,rnods
17370 if (iudid.eq.mids(j)) go to 30
17380 20 continue
17390 call u-emidu('ueh','zip')
17400 30 write (0,100) fnid,mdid
17410 100 format (/' ** the ue: zip area part not 3 dec digs '
17420 &1 detected in function ',a,' of module ',a,'.'/
17430 &1 execution terminated.')
17440 call error (I

17450 stop
17460 end

SOFTWARE ENGINEERING PRINCIPLES 13-105
14-25 July 1980

r

4..

I

I

HAS. 1 The Host-at-Sea (HAS) Buoy System

EXAMPLE DESCRIPTION

Introduction

The Navy intends to deploy HAS buoys to provide navigation and weather
data to air and ship traffic at sea The buoys will collect wind, temperature,
and location data, and will broadcast summaries periodically. Passing vessels

will be able to request more detailed information. In iddition, HAS buoys
will be deployed in the event of accidents at sea to aid sea search operations.

Rapid deployment and the use of disposable equipment are novel features of
HAS. HAS buoys will be relatively inexpensive, lightweight systems that may
be deployed by being dropped from low-flying aircraft. It is expected that
many of the HAS buoys will disappear because of equipment deterioration, bad
weather conditions, accidents, or hostile action. The ability to redeploy
rather than to attempt to prevent such loss is the key to success in the HAS
program. In this sense, HAS buoys will be disposable equipment. To keep
costs down, government surplus components will be used as much as possible.

Hardware

Each HAS buoy will contain a small computer, a set of wind and temperature

sensors, and a radio receiver and transmitter. Eventually, a variety of
special purpose HAS buoys may be configured with different types of sensors,
such as wave spectra sensors° Alth-gh these will not be covered by the
initial procurement, provisi.xi for future expansion is required.

The HAS--BEEN computeir has been chosen for the HAS buoy program. There are
more than 3000 of these available as government-surplus equipment. They were
originally developed as the standard computer for a balloon force (High
Altitude n-areying, or HAS), which is now defunct. Known as the Balloon
Internal Frivgator, they were originally called HAF-BIN computers; the
spelling WLS corrected in 1976 as part of a presidential program to remove
"redneckis!,3" from government documents.

The HAS-BEEN computer has been found suitable for the new HAS program by
virtue of its low weight, low cost, low power consumption, and nomenclature.
A preliminary study shows that the capacity of a single BEEN computer will be
insufficient for some HAS configurations, but it has been decided to use two
or more BEEN computers in these cases. Therefore, provision for multi-
processing is required in the software.

The HAS-BREN computer has a typical complement of full-word integer
instructions. Input is performed by a SNS (SENSE) instruction that selects a
device and stores the contents of its control register at a designated core

SOFTWARE ENGINEERING PRINCIPLES 14-1
14-25 July 1980

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

location. Up to 256 different sensors may be connected, and the first 256 core
locations are available for depositing the results. The device and correspond-

ing core location are addressed by an 8-bit field in the SNS instruction.

The temperature sensors take air and water temperature (Centigrade). On

some HAS buoys, an array of sensors on a ca lI will be used to take water
temperature at various depths*.

Because the surplus temperature sensors selected for HAS are not designed
for sea-surface conditions, the error range on individual readings may be
large. Preliminary experiments indicate that the temperature can be measured
within an acceptable tolerance by averaging several readings from the same
device. To improve the accuracy further and to guard against sensor failure,
most HAS buoys will have multiple temperature sensors.

Each buoy will have one or more wind sensors to observe wind magnitude in

knots and wind direction. Surplus propellor-type sensors have been selected
because they meet power restrictions.

Buoy geographic position is determined by use of a ,io receiver link
with the Omega navigation system.

Some HAS buoys are also equipped with a red light and an emergency
swit-h. The red light may be made to flash by a request radioed from a vessel
during a sea-search or .ation. If the sailors are able to reach the buoy,

they may flip the eme!gency switch to initiate SOS broadcasts from the buoy.

Software Functions

The software for the HAS buoy must carry oii:: the following functions:

1. Maintain current wind and temperature information by monitoring
sensors regularly and averaging readings.

2. Calculate location via the Omega navigation system.

3. Broadcast wind and temperature information every 60 seconds.

4. Broadcast more detailed reports in response to requests from passing
vessels. The information broadcast and the data rate will depend on the type
of vessel making the request (ship or airplane). All requests and reports
will be transmitted in the RAINFORM format.

5. Broadcast weather history information in response to requests from
ships or satellites. The history report consists of the periodic 60-second
reports from the last 48 hours.

6. Broadcast an SOS signal in place of the ordinary 60-second message

after a sailor flips the emergency switch. This should continue until a
vessel sends a reset signal.

14-2 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

T1he Host-At-Sea_(HAS) Buoy System /Doc. HAS.1

7. Ac cept external update data. Although RAS buoys calculate their own
position, they must also accept correction information fronm passing vessels.
The software must use the information to update its internal database. Major
discrepancies must cause it to invoke elaborate self diagnostics to attempt to
eliminate the errors in future calculations.

8. Perform periodic built-in test (BIT) checks. The software should be
able to detect and compensate for memory or computer-function failures. Also,
the many sensors of a HAS host are relatively easily damaged and may be
providing erroneous data. There should be sufficient sensors to provide
reasonableness checks and to allow compensation for those found to be
inconsistent or biased. Those found to be nonfunctioning can be ignored in
future calculations.

Specifically, the following BIT checks are deemed necessary:

Ca) Basic computer function test.

This test is designed to check the most frequently used functions of
the computer. It checks arithmetic ard control operations and all fast
registers. It should be repeated every 350 ins.

(b) Extended computer function test.

This program makes more extensive tests on the basic computer, plus
checking less central functions such as 1/0 and shifts. it should be
completed at least once every 5000 ins.

(c) Computer memory function test.

Each word in the memory must be checked by storing and reading all
zero, all one, and alternating zero-one bit patterns. A complete check of
a 10000 word memory should be completed every 15 minutes.

(d) Sensor consistency tests.

Although each of the sensors provides data independently, there are
known constraints on the reas~nable relationships that they can have to
each other. For example, the many temperature readings can be expected to
remain within a few degrees (,f each other and not to change by more than
20 degrees in 30 minutes. Other sensors suc. as wind sensors, contain
provision for calibration readings. Checks of all wind sensors should be
made every 10 minutes. Consistency checks of temperature sensors should
be completed every 5 minutes.

Response to Detected Failures

The software is expected to function without noticeable degradation with
damage to up to 20% of the sensors. If more than 20% of the sensors areI improperly functioning, both periodic and request reports should be marked

SOFTWARE ENGINEERING PRINCIPLES 14-3
14-25 July 1980

SEC. 14 /HOST-AT-SEA (HAS) SYSTEM

"fsuspect." In the event that the data are considered unusable (e.g., more
than 50% of the sensors found malfunctioning), a "defective" report should be
sent in place of the suspect data.

In the event that BIT detects malfunctioning of a few specific commands,
their simulation by means of sequences of other commands (e.g., simulation of
subtraction using addition and negation) should be attempted.

Where areas of memory are found defective, functioning with reduced memory
should be attempted. If no more than 10% of memory is defective, relocation
without loss of function can be attempted. If more memory is defective,
deletion of air temperature calculations should be the first step. Relocation
should then allow the performance of the remaining functions.

Software Timing Requirements

In order to maintain accurate information, readings must be taken from the
sensing devices at the following fixed intervals:

temperature sensors: every 10 seconds

wind sensors: every 30 seconds

0staga signals: every 10 seconds.

Since the buoy can only transmit one report at a time, conflicts will
arise.

If the transmitter is free and more then one report is ready, the next
report will be chosen according to the following priority ranking:

SOS 1 highest

Airplane Request 2

Ship/Satellite Request 3

Periodic 4

History 5 lowest

Program Generation

HAS host programs will be generated at the HAS Program Generation Center
(NAVHASPGC) located at Chesapeake Beach, Maryland. A NAVHASPGCPAC is also
planned for eventual location in Monterey, California. Since different HAS
buoys may carry different sets of sensors, HAS-BEEN programs may be different.
The software to be procured must include a system generator. To generate a
specific program, a configuration (number of sensors of each type) will be
described and generation of the program should then be automatic.

14-4 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

HAS.2 HAS Data Acquisition and Transmission
Software: Program Design Specification

EXAMPLE DESCRIPTION

COMPUTER SYSTEMS DISTRIBUTORS, INC.

0. U. De Zeeman R. E. Tired
Cognizant Software Engineer Contract Liaison Officer

Scope

This document is a detailed description of CSD's proposed design for the
HAS system software. The reader is assumed to be familiar with the HAS system
functions as described in The Host-At-Sea System (HAS) Buoy System (Document
HAS.1).

For a variety of reasons, the document does not assume detailed knowledge
of the HAS-BEEN computer, which is GFE for this ptiject. CSD has already
expressed its opinion that the HAS-BEEN computer is not ideal for the job.
Working together with cne of our sister firms, CHIP Corporation, we have
proposed a specially designed microprocessor that is ideal for the job. In

order to allow the Nay more time for a decision, we have prepared our design
in a machine-indepen,nt form. However, it has been necessary to recognize
two limitations of t-e qAS-BEEN computer at this early stage of the design
process.

(1) HAS BEEN has no interrupt system. Our design calls for periodic
polling of sensors.

(2) HAS BEEN has no instructions that are particularly useful in sub-

routine calls. For that reason, we have avoided subroutine calls in
many places where we might have ;ed them.

In spite of the effects of these two limitations, we believe that our design
is also applicable to the CHIP computer.

Documentation Approach

"Show me your flowcharts and conceal your tables, and I shall continue to
be mystified. Show me your tables, and I won't usually need your flow-
charts; they'll be obvious." (Brooks 1975, p. 102)

SOFTWARE ENGINEERING PRINCIPLES 14-5

14-25 July 1980

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

Believing that data structure dictates program structure, we frequently
reference a description of the Co-mon Data Base (CDB), the data structure that
keeps track of the state of HAS. A complete description of all of the data
items in the system appears in Appendix I (p. 14-10) of this document. We
find reference to the CDB description to be of great'value in understanding
the algorithms used in the system. A representative sample of the algorithms
are documented in Appendix I (p. 14-23), using a self-evident, ALGOL-like
pseudo code that we believe everyone can rpadily understand.

The proposed design divides the HAS software into functional modules, each
to be constructed by a separate group of programmers. The remainder of this
document describes each module separately and then discusses intermodule
cooperation.

Module Overview

For the moment, we will ignore the time constraints on the HAS software
and instead will describe only the system functions performed by each module.
The modules are described below:

Sensor Reading

Each sensor attached to the HAS system is controlled by one sensor-
reading module. Whenever the module polls the sensor, the value obtained
is converted to engineering units and stored in a location in the CDB.

Averaging

Unweighted time averages are computed for all sensors that are prone
to large errors. One averaging module exists for each of these sensors.
The averages are stored in the CDB.

Multisensor Averaging

These modules compute averages of readings from more than one sensor.
Depending on the type of the sensors being averaged, the readings used are
either raw sensor readings (after conversion to engineering units) or time
averages. In either case, the readings are obtained from the CDB and the
computed averages are stored in the CDB.

Omega Location Calculator

This module obtains Omega data from the CDB, uses the data to compute
the current location, and stores the location into the CDB for use by
other modules.

14-6 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

i~I7

HAS Data Acquisition and Transmission Software / Doc. HAS.2

Record Updating

This module maintains the 48-hour history in the CDB. Each time it
is started, sensor, location, and time values are copied from their
locations in the CDB into the appropriate history locations in the CDB.

Receiving Module

This module controls the radio receiving equipment. It scans
assigned frequencies for indication of a message transmission, receives
the message, and stores it into the CDB for later interpretation.

Message Interpretation

Messages stored in the CDB are parsed, and the module responsible for
responding to the message is initiated.

Report Generator

One report generator module exists for each of the five types of
reports. Each module is aware of the priority of its type of report with
respect to the other types and uses this information to ensure that reports
are broadcast according to the prescribed priority ranking. Additionally,
each module is able to access the readings it needs in the CDB and to
control the transmitting equipment used to broadcast the report.

Location Verification

This module is initiated by the Message Interpretation module when a
passing vessel supplies location information. The location information is
used to validate Omega location calculations stored in the CDB. Error
recovery is attempted if any discrepancy is larger than a specified
tolerance.

Buoy Device Control

This module reads any external switch settings on the buoy and
controls the operational emergency beacon.

Intermodule Cooperation

Owing to the limitations of the HAS-BEEN computer, we have designed the
HAS software as a set of cooperative modules. All intermodule communication
is through the CDB. Each of the modules keeps track of real time and is aware
of the deadlines of the other modules. They transfer control to each other
according to the urgency of the situation. Where several modules are able to
process data, and none has an urgent deadline, a fair round-robin scheduling
strategy is used. Each module performs this task itself because the HAS-BEEN
computer does not contain the preemption circuitry that the more desirable
CHIP computer would contain.

SOFTWARE ENGINEERING PRINCIPLES 14-7
14-25 July 1980

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

When a module needs data produced by another module (a sequencing require-
ment) or the use of some resource, the requesting module tests a variable in
the CDB to determine the status of the resource (data). If the resource is
not available, the requesting module sets the variable to indicate that it
needs the associated resource and transfers control to another module.

The transfer of control is effected by using Module Control Blocks (MCBs)
that are linked into a set of FIFO queues. The MCB, contained in the CDB,
serves two purposes: (1) it holds state information such as register contents
and the PC, and (2) it contains queue pointers. The module relinquishing
control inserts its MCB into a FIFO queue associated with the res, arce it
needs, saves its state into its MCB, selects a module to start, and loads the
machine state from the selected module's MCB.

At any given time, it is likely that many modules will be selectable,
i.e., all of the resources they require will be available. One of these
modules must be selected on the basis of the urgency of the task it performs.
Urgency is represented by a dynamically changing module priority; the more
urgent the task, the higher is the priority. A FIFO queue of MCBs is
associated with each priority level; the selection process is simply to select
the first MCB from the highest priority nonempty queue.

The alert reader now has two questions: (1) how do the MCBs get into the
selection queues in the first place, and (2) what enforces polling and other
real-time deadlines? In order to answer these questions, let us consider a
"snapshot" of the system in action. There is one currently executing module,
a number of modules waiting for a resourct to become available, and some
modules that are ready to use the CPU. The MCBs for the resource-blocked
modules are in the queue associated with the resource (as described above);
the MCBs for the modules needing only the CPU are in selection queues. When
the currently executing module makes a resource available (by creating data or
no longer needing an actual resource), it moves the first MCB on the resource
queue to the selection queue for the priority level stored in the MCB and
adjusts the variable associated with the resource to indicate that the
resource is available.

We now consider the enforcement of real-time- deadlines. Since the HAS
BEEN computer has no hardware interrupts with which to signal that an event
needs to occur, the code in each module must frequently read the real-time
clock and determine whether any modules need to be run at that time. If there
are any, those modules' MCBs are moved to the appropriate selection queues.
In any case, the MCB for the currently executing module is moved to the end of
the selection queue that it currently resides in, and the module transfers
control as described above. The movement (deletion and reinsertion) of the
MCB for the currently executing module assures a round-robin scheduling
strategy for equal priority modules since all queues are FIFO.

The ^-DB includes a Time Control Table (TCT) containing a list of time
deadlines. A queue of MCBs is associated with each deadline. Using these
data structures, each module need only compare the clock time with the TCT

14-8 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

HAS Data Acquisition and Transmission Software / Doc. HAS.2

deadlines, put the associated MCBs on the proper selection queue, select a

module, and transfer control to the selected module.

Reentrant procedures are used to save space by avoiding duplicate code.

Therefore, a mechanism is needed for providing a separate copy of all private
variables for each invocation of a reentrant procedure. The maximum number of
invocations of each procedure is determined when the system is constructed.
Therefore, we will use an array for each private variable; one array element
corresponds to one invocation of the procedure. The invocation number is
assigned by the reentrant procedure call mechanism (by use of a bit string for
each procedure), and is stored in the INV# field of the module's MCB. The
previous value of INV# is saved in the CINV# array in the Private Variable
Area (PVA) for the procedure; it is restored when the procedure returns.

The modules performing background tasks are given a low priority, and
therefore never execute unless there is extra CPU time. The report priorities
described in the module functional descriptions are enforced by the modules
themselves.

Conclusion

We believe the design presented in this document to be the best possible
design given the constraints imposed by thr, limitations of the HAS-BEEN
computer. It is also applicable to the mor~e suitable CHIP computer. The
CDB provides a clean, precisely specified intermodule interface that is system
vide.

SOFTWARE ENGINEERING PRINCIPLES 14-9
14-25 July 1980

SEC. 14/ HOST-AT-SEA (HAS) SYSTEM

APPENDIX I Common Data Base

Contents

Table Pae

Module Control Block Area (MCBA) 14-11

Time Control Table (TCT) 14-14

Average Calculator PVA 14-14

Time Control Table (TCT) 14-15

Intermediate Averager PVA 14-16

Sensor Reader PVA 14-16

Global Area 14-17

Receiver PVA 14-22

L0

14-10 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

HAS Data Acquisition and Transmission Software / Doc. HAS.2

Al 1 , .o o o1 Qo f o A. I o o1 1 a. o 1 1 w it I m o ,IIm o 1 ., .1o 1 o ;' ii I -, i b I I I I I I-M I

I I I I I

m 1 1 a. . 11 a a 1 1 i t I it I 1 C I a. 11 1 a I % 1 I= I M .1-A i t I 'I ca I1
1 01 a1 0 I o 0I 01 01 1 1 01 11: 1 "1 1 . 10 0 0 C

",k - N- I' 1k U I Il U k - IUH I ' " H IH I" -
r- 111 a) 1 0. en 1. 11 1- 41 I . I I .KI V% I In I en I C o,.II I I M U 13: I mU r- (U2 oI I I mU m I (U 99

- C) I 0 r_ C> D4 go b. ID 0 04 1 J0

o4~~~~~~~ ~ ~ ~ ~ ~ ~ If I Ow it II.1 .1 o 1 1rw 1 .1 ,1 % 1 01 11 1 Q i 1 11 1. I 11. 1 Iz I. 1 c4. 11 1 U m ' 4 1 i I. oQi I m 0. w i

- I - I - I - I - I I I I U 1 o -I I - I I I I

M U I(U I(I DU ! I 1 I7 1 M 1 - U a I UC I U CI I CU I N II- I 4 I ID I .- I N- I

< < I c 14 I T g"

Ir I oI I co' 1 :1- I m 1 1 1 ad I m I a. T I r

o I 0 0 1

7 o~~ ~ c ola o oc ,o ,, o , o ,

I- o I ' I t I I I1 of E- I it 1 11 11 It

I 0 0 01 0 0 0 1 , 0 0 0
I I I I I I I I I " -I I I

I .. , I . ,,I . , Ii I 0 I I 0 I I 0. I . I . I 0. , ,I.0.. I 0.,, I , , 0. , Ii I 0 I I (I I (I I (I0. II I ,, ,II, I .(U II I (.

& I c I I c' I 1 4r I ko I I " , I n I cm I ,c I 'g I, ' I w I a aI = r- I = I 1a m I w I a
I 1 I I I I n I on I I1 11 Q' I cQ I Q I rw I I c. I In-c4 1 m ' I Q Y I M

o as I IoI I It. > I I N' 0 a o

M, ifas ,1 c

. 1 7 I m 1 I I I I N I o I m
I I I I a I N 4 I I , 1 . n I I n.

SOFTWARE U (ENINERN P ICIPLES(W W 1W I, I. It t 14- II-. I-

IE-. IE t, , It, It, It, 1k- It It, 1- Iit II- it- 1- to 1- 11. IH 14
I . x . 11 1 0. to I a, it I a. I a . 11 1 0. It I 1 0. cI 4 [1: WI ca cm =II 0 I I 0 i I 0 I I (I I (I U I . I I (I (I I If

IC I0 10 10 10 10 04 10. I0 1. 10 0 0 0 1 0 1 0 101

0:12 Jul 1m1 1

I5 1 I n , I I I II I u I I I I I I I I I
j I I-c I < -i I m 1 I I3 J I I I" I m I m

I I I I I I U I n I I La r4 I M N I I I In I a. 1 16 1I 1 M I M I m

I I I I I I I I I I I I i o I I

Ii En Ei 1 I E

S.. m. I

N 01 01 015 0o 0r1 0 1 01. 0o I1 1 01 01 DI Nl. I 0) 0 ~ I
(4 IW (U IU :r IU In N0 lI cU 10 cm (n It It-. m M. O I IN It I -o. N

I, ok It- m t Io Io Itc IC' a It, It, Io It, It, o H

10~ Iro I0 E10 10 1 1 0 I 11. 1. 1. 10 1 0 1 0 1

c6 of a" I a f C f I 1 11 1 16 D , O f o 4 o I c1 w t I A, t I m 1 1 ca I I1 1 1 f I i t

IN U I I I I I I I I I r I cc

I'1 I -1 1 1 I I co I m" I w I Iw N I I Im m 2(I I a. a

SOTWR ENGINEEIN PINIPE 14-11 I I I

14 2 Jul 1980I I II I I I I

SEC. 14 HOST-AT-SEA (HAS) SYSTEM

I o 3 I al a al a I a I Q I 1 1 Q Q1it

3 3 3i 31 3 3 3

Iois Im u I ..h...g U . U I, U IV

1" II is I 1 1." II 1 II , it I U II (I I I . '1 1 II it cu it I! 4 1 0 1 c itI K I 1 % I A { N I n4 1{ 0 4

i . 1g 39 *3 0~ 3 1 13 21 0 4 1s I- 1 0~ . C3 .

I I I v u U I V I3 I , -I

1 3 1 1 i I U : 3
pa I , I U

MI 2 I!

U.o U ow U U'

3 33 I I

I I U I
I U

03 0 3 03 0 3 0,0 3 0 03 0 03 03 0 . 03 0 ' 0

I 3 4 I M 1 m 1 3 1 t I U O I U U I L I I L I L, I :
13II I I f I II 3 E II I E 33 I I II 3 3 II 30.33,I 0. II I . II 3 4I 3 3 I a I 4 3 w I I Ic 4 UK 3 4c

334 ~ ~ ~ " 364 34 34 3 0 3 0 3s 30 3i0n0 3 3 0 3

- 4- 1 w3 3 I U I U u I I UI 3

I '0I1 0
e I I I I I e r

11 3c It 3C 11 c w 1 1 c i , i . [4 1 4 i

I to I m 3 ,U r I U n I U m I U 3 II I
f Ln I 3C JI C I p, M C c 'n U UP

01 0 3 0 3 0 3 0 0 3 0 3 03 03 03 03 0

C 0t 313 11 I if 111 11 0, 1 a. I t " I I 0 I I 0. 11 0. it . it I o' 11 1 U it I 4C 33 3 U UII 4 3 3 3 4 I

31- 0 3 30 30 30 0 -30 0 30 3 0

N I .369 3 . I N I 23 39 I I N I 39

3_ I 3 o 3 o I I o I 3 I I 3 3 3 3 3 3

IvE1 U U U U

I n I I IIn

03 03 0 03 03 0 03 03 0! 03 03 03 03 03 03 03 0 03

3 I I I I 3 3 o 3 IIL) 3 I

, ,, ,L I I I I L)

33- I 34 l- 34 1I 3I 3 30 3 0 3 3 0i 0 0 3 0

I 3 - I 1 3 I -
I 3 3 3 3I

, 83 01 11 f, f" tx t E" U-

r 4 I3 3 33 I 3 Iw I I I I a 3 3 I I

I I 3 3 3 I 3 I 3

3~ 03 03 03 03 03 03 030 30 30 30 30 03 0

334 1. 334 w 3 3it]a) 3of If) IL IL) L) 30 IL) I) 3II) I) I

C3 3 I C 10 3c z 3 I N 3c c U

3 I-1 SO3 3 I 3 3 3 3E EN INE R I 3 3PLE

s,1JM-.7 5 M uyN98

03 03 0

31. I u I U I u IL IU IL I U L L

130 33.4 33 1 33 3H .I 3 "- 10 3 1 0 31 3 0 3 0 U00 3 m 3 :

-4 033 -i it -aI is I I -

CI I m I m P I 3z 3;; I I 3 3

'I c I 3 3 3 I I4 I w is 'j3

14--12------AREEN- INE-RIN -PRIN --PLE

3~~~~~~~42 Jul 3 3980 3 3 3 3 3

3 I I 3 3 3 3 I 3 3 I 3 3 -ha m

HAS Data Acquisition and Transmission Software /Doc. HAS.2

I 4 I j 1 4 41 U I 4 4 U I

C) g al I a a1 ,

44. 40 I0 IL 0 1 L 4k 4 4 4k 4 ,1

* c M c4 M4 -I -, In I M4 I I I ~ I

0 01 0 04 01 M0 co 01 0 4 0 4 o 04 014
4 1 4- 44 4 4I .4 If 1 1 -4 I 4 11 -1 11 1 1-1 11 1 H- I4 I I 4 4 4 4 4 4 ~ 4 4 4 4

1 U4 MI I Ub 4 ~4 1 -4 4

0 C 4 1 C I 4 '4 II K3 uo I 4I 'NI I * 4 1 4f 1 c 1 1
4 4 Y 1 0 4 1

11 1 it 1 1 " " 1 4 - I 1 ' 4 t- 11 11 41 If I

c IC C'4, I n It I

I000 0 0 040040040044040
H2 40 10 1 4 2 0 4 2 42 41 f .1 H 1 o 1 1 b I 1 i I If t- I

40 0 140 40 40 40 40 4* 4* I44 4* ;m 0*
1 U. I4 4 4- I U .- I U '- I 4 '4 4 4 4 I 4 4- 4 -, 4 - -I 44 I 44 4 44 4 44 4

IC -I co 1 M: 4 43 31 4D V

I 041 0 4 04 1 0 4 04 04, 4 04 04 04 0 4 4 0
It2 4 i 41 . 4 2 4 2 42 1 -1 11 1 11 1 If 11 f > it41 I

4E 4 0 4 r - A4 MEU~h 11 aw 044 (-4 1440

4 If 1 11 1 1 1 H 1 1 . .4 44 1 4 if 11 41 11 11 1
I In I I 1 1 1 M 1 10 1 40 4 on

I c 4 1 4: 'a Ic - 4 I 4o 1 Z3 c4 I c w Z I c4 I

4K 04 04 04 04 04 04 04 04 04 04 0o 04 04f0
40 ~ ~ ~ ~~c I2 4 2 4 2 4

40- 40 40 40 40 40 40 4* 4* 44" -I444 4

SOFTWARE444- I444 I444 4444 I444II4 I ~ 44 4 ENGINEERING~ 4 PR N IP E 4 13

1402 42l 4149802 4 4 2 4 4 2 42 4

vow-0 0* ~ 4 0 E0 '4 0 04 .4 * N ~ I I

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

.0 ,, 1, 0,_o o o a I, o I ' a 2 on z a a o

a S o I 1 I " I I 1 11 1 1 1

1 V) 1 1o
a °, c a a 1 a a a °g ° °a °, oa

-a -a a" - -a wa- -a -s a -- - a --

.. a. a a.. -.. a.a

I S I C it:I I a a a
a ~ ~ ~ ~ I a a I a a a a I .4I

a~~~ Ia Is a a mI a a a aI ca C a

c

a in i n II

31 31 o o 'J IQ ,as 0 a1 0 0 a1

a-a at, a-,ac' , am n a m a m I Io in I a. a a

00

aaiamaa gau atm ,aa m taa ,"~iaia~a

I V

in i,, of I -in i I it to ll II in I i I41t1)I I f

4- 0 0 1 V) I r. I 1 1. r

r I it it I O i I l ' -I it in O1 1 I 1 0 II 3 0 1 w O i f ! 11
t++ , . M1 - 1 14 1 , H m

I0' 111 " 14-1 IOT . t I H IP

aa a.n- , -it w o i t a1i-2a Jula a a

4-~a- a4 -a m. wa -a -a I a a -zda- a
a~P -a -a ar -a 9a a a a aa a0 a
a~ ~ ~ ~~C a 6a a a - a a a a aa

a~~ ~~~~ a7

a a a a a a a a a a a a
a~~i a a a aaa aa n ao a) an af a a3 a11 M o I VI a1 a a af af af

a~~9 1 aO a a2L a a aa aa 4 Ca toa a IC ao aI.a, C i oa
a - a Q ~ a a 17 a a a b a

a*-aag- auam a am am m amamo a~a~ i aO at

14aam14 l SOFTWAREaaU~aa ENGINERIN Paa aR~a~; INCI LEa
a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 42 July 1980a . ~a3 aaag.i t a m a

HAS Data Acquisition and Transmission Software / Doc. HAS.2

in 0 In i I - I - it * I i I " m I it I I " II 1-0I0
I= iI.I =/ . Ui UJ j I.,{..

I i if it

I: IL) IL) 1U 6L) I L) IL) I

O'*4 • 0 I .a 4 I ,0*

I , u I 12 f*- -* H 1 6wI * * I *M

1 C3 I I in I In

vI it in it E-4 11 1 -4 I-t II C. 11 N 1I H- It | '- I&I

* I 1 * I I U

I I
u E '

o * I o o o * * *I

Ii- I E * I F- - t

* Ii II I 3, If I 3 -* II I *I I * I-. II '* II * 6- I * 6- II I 6 * II I "' II I O*- N 00 IL UL ,L IL IL *u lulE-

* -.* - - I NI ml * u :

0 I 0 0 a 0 0 1 c.

* * j I I I U I *J * * * C.]
I I I . I I' I I- *- *- . l -

1.41

* I I I I I *
* I *E * * * *

It 0* 01 01 0 1 0* 1 0 01 It 0f- 0

I 6-, -

* (I II * /2 I 6- II * . 61 1 * 61 IIf 3-. 11 6-. II * -. II * l ! II *

- * *' * I I * ' N ~l-

* In

" *" * I' " I 1 1; * * 0

iti0I

* ~~~~~ ~E 0* 0 1 0* 02*01 0 *

*1- *6 4 *0 IL IL IL u IL) IL u u) E.. -

I Uy U I.,

.4AI~ - 1 OI CI E- EA -I O I In ~

L

.,)

* -* .* -* I -* N.. ..4

I * I in 11 11 E- to EA 1 *f1 6 1

* 3In it in 11C i /I I It .E - I &4 11 .6 11 -. E 6 It 1 6-. 1 1,]1. 1i I

I-I* N, o U) U 0 U I *'_* 0* ; * u 0 0
I 3 I N I- - 6 -* E I - I * III E.*

cc)* * I I * 1 tc I

I * * * * I * I * (.E-4.
* * * * * * * * *

1414 1 1. * I . U U

Q *, 1 * In * I 4n *

*6- ~ ~ ~ I *6 6 * *.*

SOTWR ENGINEER IG PR'2IIPE 14-I 6 f*6- I*6 I 15iI6 I II

14I25 July 1980) *0 I) I) L L I) *Cl

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

... I ,,
o I I .N to I I of 6 ' I I

6 I O .1 "1, -.

m, 0I 06 I 1I 0a i I Ul 0011 c a 1s .06

4 am to a a
'I in I ' : I - a

ca I

1 U

I a I 0 a a I I I I I I0

I I I

I 01 01 05 I I 1 0 0 -
a o 1 0: 4 I a I I 1 a I I

I I -a
I 60 60 I I am U am a N

Ld 4

i Na

IC I I I I f I a

II 1 0 II Ic ItI lac II I 1C 1 t 11 1I C. 1 1 1 1 P I t.11 II

a a I1 -a
a a a I a a a aI

I

II a a

a ao 06 06 06 0a 1 a0 6

a I It = I I a a a a a I

Im~ al a :~ IO . - - al a a. a. a

6 4 ao am

In a 1a OaI 1 U ~a I a A r0 ~ I U 4 UC.I I

I

0. 0 0 1 0 i 0 0 11

to a a c I I SO 1 a 1, a af It a -a t

I ao
a4 N a i %n I I y 19 a a 0

"l'-- 7 - -- -7 - 7i .- . -I

n a a a a a a, .1_ 0 C. C', .1 , " m

a of a O i a If a ac 11 a IP.N I M. 6n i n i n f s t t f: f '
I .a1 I0 I aa a a

I Oa w 0 1/i I l .II/ I I a a a a a a - a a w a

a4m1 aOTWR aNIERN PRIaNCaIPaLEaa.S.a
aO~aI~ala~aaI~aaa~taa14a25 aul aIaa/aaa -8-0a

al-a114 C a a~Iam a a amam a a

HAS Data Acquisition and Transmission Software / Doc. HAS.:

-------------- -- -- ----- -

8 .i 0 0 W a 0 I M 2 2 2 I I I0 I

u Q I 1 I I 8 III) i, 161 08 iI I .I

8 I z:
&I l.

I b b 2 t I g "t o r1 go gO go ,l g

lb, b. g ,i 16. lb 1W gw go guJo IW-g o -g o =,,,- ,'-lo ,- , -o .o ,
l o I in I ig in

" I om 1 I poll

o ma I . Coa IN g 0. 84 E4 1W I n I (mn. I.. 14.- I... l-.... In in I&o I in.* In~ ifl n I~ (/1.

1 g I0 1 o I II m I1 1 m IN 1 if IgM ain-. 1I1,a I go NIi It I lb. I I 80 0 8 i 0 I 0

so I tI 4 114 1 14 1 i ni

I Cr 1 8- 1 X: I g 1 3 g I I :g g

g - I gg gI

I 8 I C I 1 1 1 8 I m C I I 848 I
Il II I IIIccWI W II II =1 CO 80 0 04 0 8 0 '1

I I 8 IN 8 82 I 82 1 " I lb 2 IN 12 8W IN lb .1 IN lb

8 C I-8 I 8 I I I C I C I I g 8

8 C I8 8 I 8 8
I b I I

C 6 I I , lbb lb. lb..lb lb lb. lb lb 8b lb. l . lb.

ItI

I O gL. l. . 1 gG E. 8- 10 80 1b 1MlO 0. 10 l IO CO

wuo 1 1 u 0 1 4 0 g u.-C 10 b. i In gin 1, gi n gin In 88 gin Ifin g in tin
V. 8 1W 1 ca lb. In- 80. 16 oilImglIfinltgmlIgo gl wglgmgg lg tolIt

lb. 1-2 IN 0 l1 14 1 CE a I I
1 C 1 15 If IN Cb 1a Im lb. CO gi lb 82 I 2 2 I l.
I" Co lb. 1 1 8 I 1 I I I I 11 1 0 - 1 -4 IE in I C I

C g C 8 I I 8 8 I C

CH WC I lb., I IC I I I ~ 0I I $4C I

C0 8W CAO 1.3 8W 80 l 10 10 o 0 .0 81 toMI IO t O O 8

lin 0 Z I0 u I0 1 -8b O b oCrC g - 1o A Iin tI n In' V tin o I n In VA Iin t in I n g in

I as 1.4 11(1 11111.t 1 4lltb I II If l g 80 04 80 801 10 80 I0 ItOI I 1 0tO~~ ~ 1W 10 80 o- IN IW 1W 8l . l . b ~ bC, g n . . i . . g n in -8 li

a, 8b I -- I f lb 1 In lb H I lb. 80 gi lb. a*8on Io IN ton 80 INU
H II H 8 I. I I A I w I 3 I C I -C 84 I8CC - I lb. I M C4 I mI 10I I t 1 0 8 I IIm w a 10 I IC o - 1 - I al I I

8 I. f p I 1 - 8 84 I In 1 -I 8 8

w lbaM 1 I t 0 8 8w O l 10 Cn 80 80 MC I I= 10c 10 O'
gin 0 w 0l0Ogu Iu ,in c E-0l1 1- 0 I 0n Itin Ii gin t in I n t in I2 tAIin C in ti Cn
1W 1 W itIn E11I1 84 1 ta; i . ~ l~ ll l l l IW I I IW I i I IW I0II ~

aWICnIl.l Il l Hl 1111 1 :~ 80 80 a-010 F2- 0 80 82 '0- - o 10 g
IN ~ ~ ~ ~ ~ t o0 8r. 80C N 1 W l...l.l.-. I .= -. 1 n. .. n Cin.l in.C in...

I n I80 I " I E4 1 IN lb 81 N l N 8C0 I1 Ce I I 8 tin lb. 4 3 C 82 IN 82
1 I I 104 I I I -I I to . _ " _ lb . _8a

I CI I IN I I I I I .I = I " I
I I I c I o I

Q I ca I 1 4 1 0 E -I I I E o I (n I n I 1 1 Ii I t 1 1 '1 (4 A
I2 I 84 0 In 4 0- I *l4 l lb. lb lb. lb lb. lb. lb lm lb. lbaI o1 mi o1 . 8 1 1 l b.1 g b. 1in1
C4 lb i lb.fiSqi 1 - C I t 1 8t0 t 80 toa 80 0 10 80 10 80 0g 80

86 8W IC 2: 844 12 g-4 82 8 0g n l P Ol.g oC I H F.
16O W t ~ W l n l . b 0 b O i In tC4 ti ttn tI gi gin gi 4zI82:

lW 8 lt ~ l . ~ ~ l l4lI8W lk2 ll t 10 80 80 80 80 C4 80 gO 80 I I C E
lb 80 8f tin 80 E-N 8I =2 l . b g.4, n gi . . lO . in t .8 . .

1 2 IN lb. I IN lb. 12 IN lb I2 cc 4 lb. 0 IN lb w0 g Ib 82 m 3
94 In U I E4 a I 41 I I in I I I I I vC &n C 8 lb.

8 1 1I 1 1 I 1 1 i I I I Im I 1 81 I 0 C I I I 0 I 8 8
C 1 bI I i I -C I ac 8 3 1 I " 14 11 I4 I

M f C- 1 I 0- I H I3 I I I -C I ;z - ;z M , I i
08 lb. I lb I 08 10 80 lb. 801- 1 0 804 8 I0 ll.0 8 O 0 g.

1W t O 1W 1 .I 6 6 I~ It II C I II I I C I I I I U O I W I W I

C C I I I IC8 8 b

C0 I C t I = 8 8 .I C C , I 1 , I. , I
I4 I C I) I n I in I UC I I M I n I In

(1 4 i I " (1 1 C ItI IQ It I I I t IC t 1 0 , I I I4 1 m 1 0 3 1 g 1 1 c 11 I I t 1 m I m c f d I in I1 1 3 I

I z I gE ll. I lb lb lb lb lb lb. lb lb lb lb. lb.~j1 0b 1 1~? w l0. 80 1~ C 0 1

IN4 I5 Z:1 gi IN4 84 08W W l ~ b l . b I . b I n in i . . 8 n . g n . .

SOTWR EN IERN 8RP IPE 14t-71 88 8W 8 g I ~ l I I ~ ~ g g . ~ b

14-25 July 1q80

SEC. 14 /HOST-AT-SEA (HAS) SYSTEM

W, I of I sn In # n 1 n I in 11 1 sn * 1 v,1 n 1 t I - 0 - 1 1 0 1 w Ii

la, l" I lgo 'a . go a', lo lb. lb. lgo l I .. P. m af14o
0 1 0 0 .10 l40 l00 40 0 40 1 00 o -o.g I0l 1

CR/ I4 in1 141 I41 =a4 ;7 00 10 1 10 1W o0"
Ill 1 I0 caI I Q, I I jb

IC 40 0 nQI i c o-11 10 10 0I n0 a0 1 0 m 0 4 m IC 4a 0
I 0n . 0 ~ 1 I In 0.n .w I 4. I LI I £4 1.. 0 14. in 14 4 1 -I "'i m 1 I a~ I a42 1 -
o0 1 0 0 I0 I 0 (I 444 0 I 2@ I 0 I0 4 1 1.- 1 1'44 44I411I4 . 4 U - I1
in- I in - 1 3 - 1 - I A I - . -. - 1 -4 : 4 4I 44 Il I - ;

1 00 - 1 0 b 0 I 1 0 -4 I C2 1 t 9 1 0 I4 I I o" I I Itolb
X 0 1i n I m I0- 1 I 74 1 4I e I 1 I1 1 1, 1i n I o I N o r4 I o

oi aI I M I I. I i I I n I 1 - 1 11 1 ff I I in

I * I I 09I I 4 I in 0 m I m - 1 11 1 co 0 - =
4 in I i I in 1 . 4 t0 1 .to I I" - - - I - - 4
Ib lm lb. 1 0 1 m i I at4 It. I(4 a4. lb. 1 lb. i 1 It I w 1 cc 1 m fIg It1 1H 11 11 is . i I itI w t I P o

I, O l O O ~ O 10 1 4 4 40 40 10 0 1 I OOo1 10 2 f. ,a 1.4
I41 00 1 0-41 .1 (4 4 00 0 4 0 0 1 4. 00 00 1 0 4 0 4 4

O I l 0 4 I to 0 44 go 00 c4 1 00 :90,4 0 I 4 0 14 24 c, I : 4 I I C- 14 13 =m 0, a 0 1:3 4 0 93I 0

a0 10 401 1 40 :0 I0 4a 40 0 10 44 1 14 44 4 4 4 40

ago 40 I m o - I 3. - IN I I I M. 0 I I 4 I m 4 44 I t0 I N. I. o 0q 1 .- 4 m I o4 - 1 a
04 1 ~ 4 4 0 c 44 40 4 -4 44 4 0- I, 4 4 441

1000 1 0 co 43 ao I lb) o 01 0 3 D C 10 I 4 00 lb. lb. 0b1o4 m4. 4. b

o 00 14 1 0 00 40 1I 41 041 41 4401 1 40 I 0 I 0 I0 4: I 4> 1

10 10~ 10 00 16 0 0 0 4 0 0 40 4 0 44 4 44 4 4 4

149 :a- 4014 Off 4M 0V l. mZ I~ 4 x 00 4- o0- N 1 4-40o 1 1 -

11 I I cq 4s m I 4 I c4 I
1 I9 IL I I I I U) m

lb.o lb. lb. lb. ow4 lb b 4. bb. lb. 4i D. t 0

10~ 41 404-4 40 !a 40 4) 4 . 4 40 4n0 40'44 444 b. lb0b(.4b

10 414 0 0 0 10 0 411 40 40 444 4.1 40 4I 40 L', 4n 0o 40 40a
I 0 I Im 0 33 41 0 1 I t I z 44 1 In 14 4 33 1 1 0 it 1 -- 4 If 1 11 to Ca II Q it II t It P. It I. o It I4 4 t 1 44 4 4 1 It 44 11 0 44 IN

Ln I ton 1 I 34-40 - 4 1 : '4 40" 1 41 0 11 I E' - o . 4 (- I - I

31 311 m I x 11 1 as 47 1 x I L I 4 I N

O I o - I ' I I I : - 1 0 1 1 Le I. M I4
goI I Ml 1 4 0 4 0 E 4 I (A 0 1 4 1 m

10 10 1 0 00 004-4 40 * 00~ 4 b
4

40 4 ~ 44 4 . lb. 0b. 40 l.

0%02 1 M 10 0 0 0 o I o0 10 4M :30 1 M 0 0 4 r0 14Z I3 41 40 40 4.I 4 4a 0 C>

m f MI I go N 1 1 co it 0 40 4 o 0t I4 M 01 144 0 0 44 1 to 44 1 C1 of a 411 4 o It 1 4 0 44 1 90 I4 it I it I of I4 it I of I 4 4 4
10 00 0 10 40 4 0 40 40 4 0 40 40 0 0 4 4 4 4 4

I i n I in I in - I a - I .(.42 4 0 - I ' I Ia 2 o I i a m 1 e4 oem I ore 4 1 4 1 4: m r 0 1 A 4 A I 4

I I 4 0 4 0 01 14 4 4

14 IML 1: I= 4 1

I 0 0 0 I 0 0 In I I 4 0 0 4 I 4 4 4 4 I In II 0 0 4 4 I 4 0 I 4 I in I4 I 0 4 4 0 4a044 4 0

10 t0 10 0 0 a 00 40 4 0 : 0 0 '0 40 44 l. 4 04 4 1 0
1 1l 0- 1 En.I0.. 1 = 01 0- I.. 3.- I.. 0,- 3.l0 4- ... n-41 1 ..

I4I7 1 41440 04I- ,I nI m-4 in I. I m 0- 1 .m .x 4- in
-

MM- 1 ~ 0 4 44 I04o

I in in p 4 I 4 0 0 4 4
4 .4- - 44- 4444 - . - -44~ .- - - . - -4444- .4- -.- 44 - -~- . - -4- . - - - - - . 44- 4 . .4ow -4 - -

141 SOTWR ENIEEIG PRINCIPLES I 4 4 4 0 0

I I I 0 0 0 0 4 4 0 1 4-2 Jul 198

HAS Data Acquisition and Transmission Software / Doc. HAS.2

-------- -------- ---- -- -------------

01 ,M II Ij2
4 u k L a I IA 4 1 a I II t I I 4i 4

. I. IIw . w .4 I P. 11 P o P 1- . v 14 . I , s- If. Iw O I]. 40 I 1 A

oCI c I- c 1 i I C,
I w -o I Q .I ZQ -I I

In I I n 1 1 . Im I l

I~~ = I n1 0g

I04 M I0m I m 00410 41m04 00 0040041 m0410 100C w-lOmlO 4m 0 in c I
I o . ", I to1 19 40 IW 49o ca I9 In4 441 M9 I9 494 to1 43 d3 494 1 o10 4 414

-cl II iI I l II ' 1c e | -c > o I 'c. I 'c fI -c I 'c I ' II 'c I 0c I I I I i I Ic I Mi I If I If

in~~~~~. I- in-Ii I i-1 -1 1n

I1 N I HIN
I. 1 II 1 1 I . tn

c z 0 i II- .
l
k

ow I H I g- I I I 44 1 04 1 1

4 o o I I I c 0 1 I i I m 4 4 o n I a I 4 I
If go I cc I o 0 i m I i1 I4. 1 1 o 4 1 If I

'A c3 -c- 4 0 4 0 4 0 4 0 4t 4 0 4 0 4 0 4 0 4 0 If I 4 0 41 0 It

4) I31 in U1.II.4 II U2 II aII- II I o - I I o -II -nII I. a - 0i. 0l ., I I 4 INI

lb. lb 41 :r 4I 'A l 'n I N lb 4I = :,Nf N * 0 m II b. IN 4 9

4 4 I = I I M , 4 4 I 4 - 4 4 0

MI m i I cc I aII I co Q I In I w I "I I m I 4 o 1 4
4 4f I z. 11 1 i 4: t I :. I 4 1 1 11 .I I m I 1 4 41 41 4,- 41 1 41 1 lb. 411 1 -

4-2 l I I it 1

4 .40In43 1 1 4 401 0 10 40 4k10 40 40 40 1 "040 I

I . o I 43 4443 I D44 I 3 I. I) II w = - = o II 4j o II Do m I 43 I 4 4 4 I = o4 I D o II cc 0 , I
I a If IQ I IQ.., If to I IQ .. I ca4 UI.o. co., M.., 'a.. IQ m.., m... to0. . I.. o I N alb IN

If I b b I t 41 1 0 1 I f1 D. 40 1- 1:.- 4f II it4 40 1 t- It It o I
o .4 -c I I I I I If I 4 4 4

In I In w 4n I 4 I n - Ic I f I Q 4 D - I 4 0 - 4

f 4 4k I lb. 4k I 4L V. 4 4 4 I lbl. b

1 0 40 4 0 1 4 43c 4 40 ' 10 40 4 I 10 4 4 1 4 4 40 Ic 1 011 1 If 0
. in44 3 4 4 3 4 4 I I o3 .4 4i I InI I I I 4 3 I CA I 4 I 4 3 I4 4 3 I 3 44 I 3 I m 3 I4 4 I U

4l ~ ~ ~ I n44 t 1 1 _II I 1 I m I --. 40 3 4w 0 w.'nI 'o I a I .. I d,
I0- 1 . 0' fl IZ 1 4 * I x 1 I 4 v) a; N- 0 ;-II I 04 1 0'4 1 . 3c 43 Ul

4 4 4 o w I - 4 4 I 4 I l o w 4 4 I I "
n I = o I = o D o a I I co = = I I oco ca I 0 Q ca Do in a* I- I c Ic I I in 1 4 I

it 1 4 4 4 - ~ I I of I I M b ,b b

344 I34443443o44444344341n1 4343131344444114444 40 40

lIb. 10 N l. 4 b l. I 4 N l. 41 I b 0 0 l. 4
= 4 I M o I M a I. w= 0 I'm 4 r,1 W= "I lb 40 - 1 = - o

w I 4 u I u ' I I a I I I I cc I I 4o I

if o 1 1 I 1 41 I b I . if 1 11 1 1 D. lb. lb..11 : 1 c
4004 I0 C c 40 40 40 4 4 9 0 10 I . 4 400 I - 10 004 4c10 4f 1 40

4I 40 4I 40 40 40 40 4I 40 41 40 41 40 1 0 40 1 0 - 1 4

I3 I3 4 0-43 4 ..3 4 ld I3/-3 I-.3. l-0I IN 1, 33f~ lb. lb.
I~ ~ 04 b. 4 .4 b l gh. cc2 04 0 e I0 4 N 4 0 1 b 4 u 3 4

4 OTWR ENGlb. N4 ERIN lbP4RI4NlbCIIPLESN b. 4 I 14-l.19

14 2 Jul 1980 I 4 4 4 44 lb 0 I

SEC. 14 /HOST-AT-SEA (HUS) SYSTEM

Ur; C)1 I *Q I mm I a I4 1 Q I 1 6 I a 6 .r I . I w fI a I I

ID lb g. I ad 1 lb 0 I. 10 . D 00 I 0 lb01 8W 6W Ik a, lC3 ID6 lb 60 lb. aW lb. 01 00 10 1b 60 l
14. I 16 d It *j6 , I il O 6 D~Io I14 1 ".O t- I " 14 18 666bO I 140* "" 80

614K I oo. 11 114 81 23IU 10l 63 61 0 1 11 1C~t I6 63 0
254 614 84

1
q 61 4l I1 l 114 1 W. it lb liUmf 6

III. ~ ~ ~ ~ ~ ~ ~ 0 g64 "1 6 6 6 6 6 I 6 b

en 6n 0 6 n a I o go I 611g I m m I m I goe 6.0 00 A I N a 1 0 1 1 - 16 1 I10 1C

N I In 6 I C3 C4 1 81 1 I 6 I t-I I 1, 6 If I I 0
1- 1 1' 1 I 8 I I I I I I a I

1b lb. lb m W. I in 1 64 t lb. lb l lb; b b b

Irm in 6WI 1 10 60 lb 6 1 0 ID 1 6110 10 In cW IW V W 60' 1 b 6o 11 110 1 Z)
cz to IW 6. I0 IW . 6. 610 60. 60, 61 60 60 600. 8 6

61 83 631it1 1 19 1 061 64 I6- 6W 11 1 66/11t 60 lb 60 I6. 6 = If4 I lU 1 610 601V
6N/ 1 60 lb 1 614 I 6t4 IW m W 6 6 &4 63 1 614 I 66.4 IW 8W 611 14

Ei It I3 6 6 6 I I 6 0 6 1
-I w I x I Call I 6 I m I 'a6 6

a 6 6 " I C , as m I II I m c I cc 1 0
11' 1 1 6k M I I I m 1. 116 I

lb. lb lb In o oo-i I I lb. I mm lboa . l. it lbI. I lb. lb I b lb. lb.
60 60 A3 lb lbI. U l1 60 lb 1 10 60 lb 0 lb. 0 60 10 6m6
1W 6W 6W 61 6 t0 lb 60 1 0 60 6t 6W itI - 6 NW 8W 11 16110 I 0 1 W

N 8 1 6 l I m/61 N~ 1 64 1 F- I . In 1 0 0 a C 4 1 E- I 0. I I m.0 I. w 6 0 1 60.
6W - IW I- I6i8 1 8.9 1W 6. I 60 60 10 601 60. 6I I0 60 1~ 1 W 1 W 601

I3 Er- 6I 614 664;n3 6 W l. 60 l. 6 1 3 6 64 lb 46

lb lb lb 6 M it I CA 0 6 lb. lbaa 1 0 r5 g m I . n lb lm lb. 6 lb. lb. lb.o i i

"110 1 in _A 1 08 1W Wit IW it it. I i0 IW 60. 6 . 6 WI I. it ir 60.0 16 6 110 1It
6W 61 c W 60 / 8 60. =0 6= 60. 6. 60 60 60. 60 60 60 60 it eW 600

IN 66.1 66. 1 0 1 1- 14 61 68/ n1 60 60 61 61 H ' 61 61 1 -- f. 6I 60I
614 61C4 61E4 lf 64 164 m I 4 63 63 63 63 63 IIm I 63 6I 61 80 60 6

N . I I I E6 6 I I E -, I I 1 I

(a I In 1 0 6 6 6 6' I a, a. 'I I Q I = I 6 a, I I = I=6oIC
6 0 if b II lb. lb 80 lb.10 i 0ItI=I 11= fImi tI tI i 4 1 lb. I 60 lb. 60 60 60 1 60 6110 b.1

IInM6 W 681 I I p W I E. 6 0 6 I 0 'A 1 0 6W 606 6 0. 6 =6 6 4 0. I- 1. E . .0 6 /0 I 1186)

IN ,0' I =0 1 61 68/41 161- 1 i I0 Mt 0 1 0~1 61 614 14 63 63 I

6m4 a I w I to I In 1 6 b. 6 6

m 6 0 6 0. 1 1% 1 1 Iw I 6 1 ca I Z I IQ I in

60 it Co. 60 60 lb . 01 .lb. lb lb. lit lb C4 1 60 60 lb. 6 m 60 60 60 f lb.

IN IO4 1W 61 614 66/ 61/ 6I 6 0 6 4 64 64 I 1 1 3 6 O

61.4 11 4b 6 6 6 6 I 6

I~~ Il ow lb. 1 6 6 6 I 6 6

0)n1 1W 6/1 0 6 10 0 60 lb. 66 lb 0 60 M W Lo: IW in 80 6

I0 a 6 1 0 6110 0. 61) 1. 60 60 60 6W 60 60 6, C0 60 61 60. 1= 111:0

IN N 0 1 1 4 14 t 614 I8/ 68 I = (7 1 0 1 614 61 61 614 61 IM IW II

w I~ I 6 6 6 6 I 6 6

l b . .b l b l b b 0 b b b b b

HAS Data Acquisition and Transmission Software /Doc. HAS.2

I ,l " W a W I
o I I

M I , - . : - 0- ,. o ,: : Dq * 1 1

M I If 1 0 f 1 C (o Q c fI w Q i

I
19

w I I I 1 " II I I" 1 9 1 " go g.
if IW 9 9f11.1 10 Is Q 9 60 In Il0 I 109 11A, 10 0. 90 1 bi I 1 1 . 1 r. I. I. IQ4 I

10 10 90 l u 0 1 a. I w IS I l I-. I- I- M M I AN I-. 1am I

0 0 t* a9-. 0 9W l 0 i. 0 II1
S- 1 a IS .- 1 0 9 0 IS. 90 9 I

I 1 1 I11 91 1 90 I I 90 1 a 11 1 f A 9 1 90 I , ,

I 9 9 9 9 I I I I I lu 1I 9 1 1 Ib '

. . 1 I - 1 I . I I I An I o

I III 1 0 1 .4 ." I9 ad I I 9n 1 0 1 991 1IM 0 M I-

4 I I I M I 9 I I I I I 1 9 m I " 1

04 1

90. lb lb I lb lb t9 1 9 [9 9 - I m- 9 I - lb. 9 9 I

0 I lb. 10 , 0 lb. 9 lb. lb. I I . 90 9I 130954 I

o3 o C1 1 0 o M 11 1' 0,- o0. 1. 1 ago m m m ,.

93 1W 0 1 0 10 l. 1 0 90 lb. 91 lb. 9 90 9 W 14 1

S J to ,-l 1 , o It EnlIt I u 1 9- 'W IM If 1 0.I lI c

90 90 90 I UI O 9 0 9W 994 U, MW 90 1 Ix.1 cc MW =91 I a
.3 - 10 . 1 I0 I 3 M Ow 90 IW -c 9 I IM 9 m0 k., I o It W 0~ 0

10 114 914 I 1 04 94 I-I E l 11- 9 0 9 14 9W I' l. 112 1

I I

I n I I I 1 1 1 1 9 I

9 19 1 M gIU. 1 I l I. 19. InI I I 1 1 C 1 11 1i t I I lb I11 1 .t I llt 199 N

90 lb. 90 b. 10 13 0 lb p, or 90 cI - "I Ib lb lb 90 lb lb.* 1130. "1
9t 90 I 9M 1 0 90 1 90 lb. 1-1 lb 9 0 90 M0 9I 90 90 9am 9I In 1

l 0 .l W I I 0 ' 9 WI I O I O W O I I W O 9 I I W 9 N O t ' 0 .IW I.

90 9 , 90 90 0 0 cc 0 9 Il 9W I- , I-I II- 90. I I 9 l -,O II

9 1I0-, UI I0.I U ~ l I931 13, 90 . .1 91.I 01 01 10.L 1 9 .1 9t.1 90 994n1In,

m I

960 1It I a.0 1 M .10 90 0W 1 9 1.£ 9 10 1 901 1W o 0 9I Co 0 W9 m 9

SO F T W A R E G N .I L, I m I I l I F- I 1 4 - 1 1

lbC .1 9It M 90 II- fI 1 1 14I I l- 1 I 1 94 1 1 1 1 1 1 1 if 1 11 1 9 I1 1 1 1 1 '
11 I 90 1 I0 1 0 9 c U) 9 c I 11 9W II4 lb. 9 I ca 91 9 0

9 4 9 9W 95 .I I 4N 19 . 1L n IQ

x 1 - 1 98 w I I

..n0. enI I .I I a I 9 1 1 M 1 9 C I ' 90 M ,1

90 99 90 0 C9IOw 10 1. lb lb 5 lb 91. lca 90 E0. lb lb lb. I11EH I39IH54o.. i
I0 90 9tIUPo WIu 1 M 1 W u I 10 1 1 b1 o tI . 1 Q 10 90 1 1 0 cu0 61 11M 10 901 1 4 M 9I
90 10 a 910 10 0I 10 1 2 102 1 U Il- Il = I t 90. Il Ias 1 211 IlIlO 4 10 A 1co
I U .3 1 0 ... Li I U 1 .211 l.3 I 0 3 1 " I I or t .-.. 0 1 10.1 I 0.1 = I 10.1 1 13I. II 91 0. I 9I I ll4
I1I4 = I as 1 .4 1 0 1 10 10 9E 1 1 4 14 90 I Il- 90 109k 1910 911 90 1 143

0. C6~l 90 1 0 9U 1 1W 91 00 .0 1W go 9W in 10 9W 0I CAN1
91 . 946 W . 1 1 1W 10 10 90 m11 10 999 =~ 0

I= M 1 0 9W 94 I Id 134 90 At 1. W I94 IE4 1 9 1113 4
I I I1 I t I U I o - I I) 1 I 6 I I 9 I.9

I j u I of I 9 9 9 I it of 9 I

90 0lb 90 3 904 10 10 91- 90. I= lb. 90 9 91. OM. 91w, O. lb 9,10. 11 040 u

.1 90 , ",W 90 OW OM 0 1 9 1. 90 1 90 0 10 90 100 90 9w4 114 0

90 10 10 90 1 10 5, *a,1) In' 1. I' 9- l t t t 11141

9 4 .0-I 90, IC 10 ad - 1Wo I a 11 I Ii 0 94 C W I 9Q 0 £ n 110 16110 0 oi910 1 Oil I0
9.-i 1 0 1 0 .4 1. 9-30 90 I0 U E 9 I1 9W " 11 1W (- II. 90 9[-- I 11 [,I it. of,
14u i tu 1. U 1- .0U 119. 1 911 -4 Ito V)o 1 0 M W 90a i 1 11 1W la. 10 919 0.1 9

.4 I It W 114 t' . 10 I I I lm 10 I 3 11 I' al- IO s 94 9
9 b1 .4 1 0 9 Iw 1 0 M 9 ad I I IA 9.42 1 9
I on CO I

SOFMRE NGINERIG PRNCILES 4-2

14-2 Jul 1980£ I I I I 9 9 9

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

i in
Ihiu I

a to
I I

I I

I !

I I I I

U

I U I I
C g

t 04 I I

I I- .4

l U
IEL

114 7a I

1U23

I I

* I I
11 1 1

44 Ca -cU

1 3c I .,, 11
I C

I I I

14-22 SOTAEENIERN PICPE
42I J

CUl; 10 -

ItJ C ' I

I
1 I2 SOTAR NINEIN RNCPE

14-25 July 19801

HAS Data Acquisition and Transmission Software /Doc. HAS.2

APPENDIX II Sample Algorithms

Contents

Program Page

sensor-reader 14-24

emergency_report_generator 14-27

transmitter 14-29

SOFTWARE ENGINEERING PRINCIPLES 14-23
14-25 July 1980

_ _ _ _ _ _ _ p

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

I sensor-reader:
reentrant program srdr(sensnum,okfcn,fetfcn,buffer,sem);
conmment This program reads a sensor and stores the result

in an observation buffer.

sensnum: sensor number
okfcn: function to test operation of the sensor
fetfcn: function to retrieve a sample from the sensor
buffer: observation buffer to insert sample into
sem: semaphore to wait on for scheduling

Typical parameter values:
sensnum, okfcn fetfcn buffer sem
1 to 3 okat fetat atobsbuf ats
1 to 5 okws fetws wsobsbuf wss
1 to 5 okwd fetwd wdobsbuf wds
1 okom fetom omobsbuf oms
1 okwtl fetwtl wtlobsbuf wtls
1 okwt2 'fet'wt2 wt2obsbuf wt2s
1 okwt3 fetwt3 wt3obsbuf wt3s;

parameter integer sensnum;
parameter procedure okfcn, fetfcn;
parameter structure buffer of integer(fntyrrysize)

of structure o of integri h, t)
of structure r of integer~i, h, t)
of structure i of integter~i, h, t)
of struLture f of integer(i, h, t)

of integer b (s.buffer);
parameter structure sem of integer~i, h, t0;
begin private integer obs;

while true do
begi-n

begin global structure sem(sensnum) of integer(i, h, t);
i-sem(sensnum) :- i.sem(sensnum) -1
if i-sem~sensnum) < 0 then
begi global integer cmn;

begi private integer pri; global integer head-ready_list,
tail -ready-list;

pri := priority(cmn);
removep(cmnn,head-ready-list(pri),tail-ready_list(pri));

end;
insertp(cmn,h.sem~sensnum) ,t.sein(sensnum));
proc~ssor-allocate;

end;
end-if;

end;

14-24 SOFTWARE'ENGINEERING PRINCIPLES
14-25 July 1980

_______________RAS Data Acquisition and Transmission Software /Doc. HAS.2

binglobal integer tct, dlist, dtime;
if dtime(tct(dlistl)+1)) > "clock time" then
quick;

end-if;
endi;
if okfzn then
begin

obs := fetfcn~sensnum);
bgiba intege tct, dlist, dtime;

if dtirne(tct (dst C1)+1)) > "clock time" then
quick;

end-if;
end;
begi global integer fnt-buffer(sensnum), s.buffer(sensnum);

global integer buffer(sensnum) (s.buffer(sensnum));
begi global structure i.buffer~sensnum) of integer~i, h, t);

i.i.buffer~sensnum) :=i.i.buffer(sensnum) - 1;
if i.i.buffer(sensnum) < 0 then

bgnglobal integer cmn;
bgnprivate integer pri; alobal integer head-ready-list,

tail-ready-list;
pri :=priority(cmn);
removep(cmn,head-ready_list~pri),tail ready list~pri));

end;
insertp(cmn,h. i.buffer(sensnum) ,t. i.bufferC sensnum));
processor-allocate;

end;
end-if;

end;
begin global structure f.buffer~sensnum) of integer(i, h, t);

i.f.buffer(sensnum) :=i.f.buffer(sensnum) - 1;
if i-f-buffer(sensnun) < 0 then

begin global integer cmn;
bgnprivate integer pri; global integer head-ready-list,

tail -ready-list;
pri :=priority(cmn);
removep~cmn,head-ready_list~pri),tail ready list~pri));

end;
insertp(cmn,h. f.buffer(sensnum) ,t. f.buffer(sensnum));
processor allocate;

end;
end-if;

t end;

SOFTWARE ENGINEERING PRINCIPLES 14-25
14-25 July 1980

SEC. 14 / HOST-AT-SEA (PAS) SYSTEM

buffer~sensnum)Cfnt.buffer~sensnum)) :=obs;
fnt-buffer(sensnum) : mod(fnt-buffer~sensnum),s.buffer(sensnum))'l;
begin global structure r.buffer(sensnum) of integer(i, h, 0);
i.r.buffer(s-um:= i.r.buffer~sensnum) + 1;
if i.r.buffer~sensnum) < 1 then

removep(h. r.buffer(sensnum) ,h.r.buffer(sensnum),
t.r.buffer(sensnum));

begin private integer pri; global integer head-ready~list,
tail-.ready_list, priority;

pri :- priority(h.r.buffer~sensnum));
insertp(h.r.buffer~sensnum) ,head -ready list(pri),

tail-ready~list~pri));
end;

end;
end-if;

end;
binglobal structure i.buffer(sensnum) of integer(i, h, t);
i.i.buffer(nsuT:= i.i.buffer~sensnum) + I'
if i.i.buffer(sensnum) < 1 then
begin

removep(h. i.buffer(sensnum) ,h. i.buffer~sensnum),
t. i.buffer~sensnum));F begin private integer pri; global integer head-ready~list,

tail ready list, priority;
pri :=priority(h. i.buffer~sensnum));
insertp(h. i.buffer(sensnum) ,head -ready list~pri),

tail-ready_list(pri));
end;

end;
end-if;

end;
end;
begin global integer tct, dlist, dtime;

if dtime(tct(dlist(l)+l)) > "clock time" then
quick;

end-if;
end;

end;
end -if;

end;
end-while;

end;

14-26 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

HAS Data Acquisition and Transmission Software /Doc. HAS.2

(emergency_ report__generator:
comment Add time dependent information to emergency report and

put it in the emergency report buffer;
begin private character string;

while true do
begi3-n

beginj global structure sosrept of integer(i, h, 0);
i.sosrept :=i.sosrept
if i.sosrept < 0 then

Sglobal integer cmn;
binprivat integer pri; global integer head-ready_list,

tail-ready-list;
pri z=priority(cmn);
removep(cmn,head-ready_list(pri),tail-ready_list(pri));

end;
insertp(cmnyh.sosreptpt.sosrept);
processor-allocate;

end;
end-if;

end;
begin global integr tct, dlist, dtime;

if dtime(tct(-dlist(l)+1)) > "clock time" then
quick;

end-if;
end;
string :=format("(9Hsos from ,AlO)",fetemreport);
begin global inee tct, dlist, dtime;

if dtime(tct(dlist~l)+l)) > ",zlock time" then
quick;

end-if;
end;
begLin global integer fnt.emrptbuf, s.emrptbuf;

global integer emrptbuf(s.emrptbuf);
begin global structure i.emrptbuf of integer(i, h, t0;

i.i.emrptbuf := i.i.emrptbuf - 1,
if i.i.emrptbuf < 0 then

A begin global integer cmn;
begi private integer pri; global intcger head-ready_list,

tail-ready-list;
pri := priority(cmn);
removep(cmn,head-ready_list(pri) ,tail ready_list(pri));

fend;
insertp(cmn,h.i.emrptbuf,t.i.emrptbuf);
processor-allocate;

end;
end-if;

end;

SOFTWARE ENGINEERING PRINCIPLES 14-27

14-25 July 1980

SEC. 14 /HOST-AT-SEA (HAS) SYSTEM

bgnglobal structure f-emrptbuf of integer~i, h, t0;
i.f.ernrptbuf :=i-f-emrptbuf - 1;
if i.f.emrptbuf < 0 then
begin global integer cmn;
begin private integer pri; global integer head-ready_list,

tail -ready -list;
pri := priority(cmn);
removep(cmn,head-ready_list(pri),tail-ready_list(pri));

e nd;
insertp(cmn,h.f.emrptbuf,t-f-emrptbuf);
processor-allocate;

end;
end-if;

end;
emrptbuf(int.emrptbuf) := string;

-l fnt.emrptbuf :- mod~fnt.emrptbuf,s.emrptbuf)+l;
binglobal structure r.emrptbuf of integer i, h, t);
i.r.emrptbuf :=i.r.exnrptbuf + 1;
if i.r.emrptbuf < 1 then
begin

removep(h.r.emrptbuf,h.r.emrptbuf, c.r.emrptbuf);

bgnprivate integer pri; global integer head-ready~list,
tail -ready -list, priority;

pri :=priority(h.r.emrptbuf);
insertp(h.r.emrptbuf,head-ready-list(pri),tail ready-list(pri));

end;
end;

end-if;
end;
begi global structure i.emrptbuf of integer~i, h, t);

i.i.emrptbuf :- i.i.emrptbuf + 1;
if i.i.euirptbtif < 1 then
begin
removep(h.i.emrptbuf,h.i.emrptbuf,t.i.emrptbuf);
begin private integer pri; global integer head-ready_list,

tail -ready list, priority;
pri :- priority(h.i.emrptbuf);
insertp(h.iemrptbuf,head-ready_list(pri),tail ready~list(pri));

end;
end;

end-if;
end;

end;
end;
end-while;

end;

14-28 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

HAS Data Acquisition and Transmission Software /Doc. HAS.2

transmitter:

reentrant program xmit(freq,rptbuf);
comment This program broadcasts a report. The report

contents are obtained from the buffer "rptbuf."

freq: frequency to broadcast report on
rptbuf: buffer containing the report contents

Typical parameter values:
rptbuf freq
prptbuf 5000
arptbuf 161000

erptbuf 5100
srptbuf 300
hrptbuf 5100;

parameter integer freq;
parameter structure rptbuf of integer(fnt,rr,size)

of structure o of integer -, h, t)
of structure r of integer(i, h, t)
of structure i of integer(i, h, t)
of structure f of integer(i, h, t)

of integer b (s.rptbuf);

belin private character char; private integer xmitrnum;

while true do

begin global integer rr.rptbuf, s.rptbuf;
global integer rptbuf(s.rptbuf);
~global structure o.rptbuf of integer(i, h, t);

i.o.rptbuf :- i.o.rptbuf - 1;
if i.o.rptbuf < 0 then
begin global integer cmn;
begin private integer pri; global integer head ready list,

tail ready__list;
pri := priority(cmn);
removep(cmn,headreadylist(pri),tailready__list(pri));

end;
insertp(cmn,h.o.rptbuf,t.o.rptbuf);
processor allocate;

end;
end-if;

end;

SOFTWARE ENGINEERING PRINCIPLES 14-29
14-25 July 1980

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

ttj global structure r.rptbuf of integer~i, hp t0;
i.r.rptbuf := i.r.rptbuf - 1;
if i.r.rptbuf < 0 then
begin global integer crnn;
begin private integer pri; global integer head-ready_list,

tail -readylist;
pri := priority(cmn);
removep(cmn,head-ready_list~pri),tail-ready_list(pri));

end;
insertp(cmn,h.r.rptbuf,t.r.rptbuf);

processor-allocate;
end;

end-if;
end;
rr.rptbuf :- mod(rr.rptbuf,s.rptbuf)+1;
char := rptbuf(rr.rptbuf);
begin global structure f.rptbuf of integer i, hi, 0);

i.f.rptbuf :=i.f.rptbuf + 1;
if i.f.rptbuf < 1 then

betgin
rernovep(h. f.rptbuf,h. f.rptbuf,t. f.rptbuf);

bgnprivate integer pri; global integer head_ready _list,
tail -ready list, priority;

pri :=priority(h.f.rptbuf);
insertp(h.f.rptbuf,head-ready~list(pri),tail ready -list~pri));

end;
end;

end-if;
end;
begin global structure o.rptbuf of integer(i, h, t);

i.o.rptbuf :- i.o.rptbuf + 1;
if i.o.rptbuf < I then
begin

removep(h.o.rptbuf,h.o.rptbuf,t.o.rptbuf);
begi n private integer pri; global integer head-ready-list,

tail -ready list, priority;
pri := priority(h.o.rptbuf);
insertp(h.o.rptbuf,head ready~list(pri),tail-ready_list(pri));

end;
end;

end-if;
end;

end;
begin global integer tct, dlist, dtime;

if dtime(tct(dlist(1)+I)) > "clock time" then
quick;

end-if;
end;

14-30 SOFTWARE ENGIIKEERING PRINCIPLES
14-25 July 1980

HAS Data Acquisition and Transmission Software /Doc. HAS.2

begin private boolean not found;
not_found :- true;
while not-found do
beg~inI

begi global structure ttablchng of integer i, h, 0);
i.ttablchng :- i.ttablchng -1
if i.ttablchng < 0 then

begi global integer cmn;
begin private inee pri; global integer head ready list,

tail-ready list;
pri := priority(cmn);
renovep(cmn,head-ready_list(pri),tail-ready_list(pri));

end;
insertp~cmn,h.ttablchng,t.ttablchng);
processor-allocate;

end;
end-if;

end;
begin global structure xmitrtabl of integer~i, br 0);

i.xmitrtabl :- i.xmitrtabl - 1;
if i.xmitrtabl < 0 then
begin global integer cmn;

egnprivate integer pri; global integer head-ready_list,
tail-ready-list;

rimopiorityadcrn); 1ist(pri),tail-ready_ list(pri));

end;
insertp(cmn,h.xmitrtabl,t.xmitrtabl);
processor allocate;

end;
end-if;

end;
comment Look in table for available transmitter of proper type and

s et not found;
if not-found then
begin global structure xmitrtabl of integer i, h, 0);

i.xmitrtabl :- i.xmitrtabl + 1;
if i.xmitrtabl <1I then

removep(h.xmitrtabl,h.xmitrtabl,t.xmitrtabl);
begin private integer pri; global integer head ready~list,

tail-ready list, priority;
pri :=prio ity(h.xmitrtabl);
insertp(h.xmitrtabl,head ready list(pri),

tail-readylistpri));*
end;

end;
end-if;

en~d;
end-if;

end;
end-while;

SOFTWARE ENGINEERING PRINCIPLES 14-31
14-25 July 1980

777

SEC. 14 /HOST-AT-SEA (HAS) SYSTEM

commnent Mark selected transmitter as in use;
binglobal structure xznitrtabl of integer(i, h, t0;
i.xmitrtabl :- i.xznitrtabl + 1;
if i.xmitrtabl < I then

binprivate integer pri; global integer head ready_list,
tail -ready-list, prio-rity;

insertp(h.xmitrtabl,head-ready_list(pri),taii ready_list(pri));
end;

end;
end-if;

end;
xmitrnum :- "selected transmitter number";
xmitr -tune(,cmitrnum, freq);

end;
bei lobal integr tct, dlist, dtime;

if dtim ttdlist(l)+l)) > "clock time" then
quick;

end-if;
end;
Bend(xmitrnum,char);
begin lo integer tct, dlist, dtime;

if dtime(tct(dlist().1) > "clock time" then
quick;

end-if;
end;
while (char ne "end of report character") do
begin

begin global integer rr.rptbuf, s.rptbuf;
global integer rptbuf(s.rptbuf);
begin global structure o.rptbuf of integer(it h, t);

i.o.rptbuf :- i.o.rptbuf - 1;
if i.o.rptbuf < 0 then
begin global integer cmn;
begin private integer pri; global integer head ready_list,

tail-ready~list;
pri := priority(cmn);
removep(cmn,head-ready_list(pri),tail-ready__list(pri));

end;
insertp(cmnyh.o.rptbuf, t.o.rptbuf);
processor-allocate ;

end;
end-if;

end;

14-32 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 19R0

HAS Data Acquisition and Transmission Software Doc. HAS.2

binglobal structure r.rptbuf of integer(i.h.t);
i.r.rptbuf :- i.r.rptbuf - 1;
if i.r.rptbuf < 0 then
begin global integer cmii;

begin private integer pri; global integer head-ready-list,
tail-ready-list;

pri :- priority(cmn);
removep(cmn,head-ready_ list~pri),tail ready list(pri));

end;
insertp(cmn,h.r.rptbuf,t.r.rptbuf);
processor-allocate;

end;
end-if;

end;
rr.rptbuf :- mod(rr.rptbuf,s.rptbuf)+l;
char :- rptbuf(rr.rptbuf);
begi global structure f.rptbuf of integer(i, h, t);

i.f.rptbuf :- i.f.rptbuf + 1;
if i.f.rptbuf < 1 then
begin

removep(h. f.rptbuf,h. f.rptbuf,t. f.rptbuf);
begi private integer pri; global integer head-ready list,

tail ready~list, priority;
pri := priority(h.f.rptbuf);
insertp(h. f.rptbuf,head ready list(pri) ,tail-ready~liist(pri));

end;
e nd;

end-if;
end;
begia global structure o.rptbuf of integer(i, h, 0);

i.o.rptbuf :- i.o.rptbuf + 1;
if i.o.rptbuf < 1 then

removep(h.o.rptbuf,h.o.rptbuf,t.o.rptbuf);
beg~in 2 ~rivate integer pri; global integer head-ready list,

tail -ready-list, priority;

pri := piiority(h.o.rptbuf);
insertp(h.o.rptbuf,head ready-list(pri),tail-ready list(pri));

end;
end;

end-if;
end;

end;
be~jn global inee tct, dlist, dtime;

if dtime(tct (dlist(l)+1)) > "clockc time" then
quick;

end-if;
end;

SOFTWARE ENGINEERING PRINCIPLES 14-33

14-25 July 1980

SEC. 14 /HOST-AT-SEA (HAS) SYSTEM

send(xmitrnum,char);
bejgi oba integer tct, dlist, dtime;

if dtime~tctT(dlistC 1)+1)) > "clock time" then
quick;

end-if;
end;

end;
end-while;
begin global structure xmitrtabl of integer(i, h, t0;

i.xmitrtabl :- i.xmitrtabl - 1;
if i.xmitrtabl < 0 then

begin global integer cmn;
begin private integer pri; global integer head-ready_list,

tail -ready -list;
pri :- priority(cmn);
removep(cmn,head-ready_list(pri),tail ready~list(pri));

end;
insertp(cmn,h.xmitrtabl,t.xmitrtabl);
processor-allocate;

end;
end-if;

end;
conmment Mark transmitter xmitrnum available in transmitter table;

bgnglobal structure xmitrtable of integer(i, h, t0;
i.xmitrtabl :- i.xmitrtabl + 1;
if i.,mitrtabl < 1 then

removep~h.xmitrtabl,h.xmitrtabl,t.xtitrtabl);
bgnprivate integer pri; global integer head-ready_list,

tail -ready list, priority;
pri :=priority(h.xmitrtabl);
insertp(h.xmitrtabl,head-ready-list(pri),tail-ready_ list(pri));

end;
end;

end-if;
end;
begin global structure ttablchng of integer(i, h, t);

i.ttablchng :- i.ttablchng + 1;
if i.ttablchng < 1 then

~egi
removep(h.ttablchng,h.ttablchng,t.ttablchng);

binprivate integer pri; global integter head-ready_list,
tail -ready -list, priority;

pri :- priority(h.ttablchng);
insertp(h.ttablchng,head-ready~list(pri),tail-ready~list(pri));

end;
end;

end-if;
end;

14-34 SOFTWARE ENGINEERING PRINCIPLES
14-25Juy18

HAS Data Acquisition and Transmission Software /Doc. HAS.2

bei global integer tct, dlist, dtime;

if dtime(tct(dlist(l)+)) > "clock time" then
quick;

end-if;
end;
begin global structure bcast of integer(i, h, t);

i.bcast :- i.bcast + 1;
if i.bcast < 1 then

removep(h.bcasth.bcastt.bcast);
begin private integer pri; global integer headreadylist,

tail-ready list, priority;

pri :- priority(h.bcast);
insertp(h.bcast,headreadylist(pri),tailready_list(pri));

end;
end;

end-if;
end;
h global integer tct,,dlist, dtime;

if dtime(tct(dlist(l)+l)) > "clock time" then

quick;
end-if;

end;
end;
end-while;

end;

SOFTWARE ENGINEERING PRINCIPLES 14-35

14-25 July 19C'O

HAS.3 HAS Improved Modular Structure

EXAMPLE DESCRIPTION

Einar Newhire

Information System Specialist
Computer Software Division

Naval Electronics Research Laboratory (NERL)

Introduction

Last week, the HAS contractor (CSD) sent a memo warning us against making
any further changes in the HAS configuration. He complained that the recent
decision to use a different kind of transmitter will require such substantial
changes to the Computer Program Design Specification (CPDS) that he is not
sure he can meet the deadline.

In my opinion, the contractor's reluctance to make any changes is a sign
of poorly designed software that will be expensive for the Navy to maintain.
It is inevitable that some changes will be needed during the life cycle of the
system. The system designer can reduce the cost of future modifications by
anticipating areas that are likely to change, and designing the software so
that coding changes will be easy to locate and easy to make.

I propose an alternate design for the HAS system, using Information Hiding
Modules. I identify design decisions that are likely to change and limit the
knowledge of any one decision to a single module. I contend that a system
with this structure will be easier to maintain, since the effects of changes
will not ripple through the programs causing unexpected errors.

My proposed design has 17 modules, which are described on the following
pages.

A

SOFTWARE ENGINEERING PRINCIPLES 14-37
14-25 July 1980

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

BUF: Buffer Maintenance Module

This module knows all the details about the buffers that are used to

communicate information between programs, including the storage represen-
tation, how large they are, and what to do when a buffer is full or empty.

The programs that accept data from buffers and that deposit data in
buffers are part of this module.

If we have several different types of buffers, there may be a separate
submodule for each type, since they may have different sizes and behavior when
filled up.

CC: Communications Control Module

The transmission frequencies for the various reports and the frequencies
to be monitored for incoming messages are secrets of this module.

The module consists of programs that control the transmission and
reception of messages, deciding when to reset frequency or change transmitter
power. These programs call the TC and RC programs that actually control the
devices.

The CC programs take characters to be transmitted out of buffers where
they were put by MF programs.

The CC programs put received characters in a buffer for MF programs that

handle incoming messages.

EM: Emergency Equipment Control Module

This module turns the emergency light on or off on demand. Its secret is
the computer action that controls the light.

IG: Information Gathering Module

This module contains programs that compute the values to be stored in the
Record Storage, using data obtained from the Sensor Control Module.

Each type of value is computed by a submodule, whose secret is the
algorithm used in the computation.

14-38 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

HiAS Improved Modular Structure / Doc. HAS.3

MEN: Memory Allocator Module

This module knows and enforces the memory usage policy.

It contains a submodule that knows the actual memory size, and how the
memory is allocated. The secret of the submodule consists of tables
indicating the memory access rights of programs and the operating status of
memory areas. The submodule provides programs to obtain or release portions
of memory and to mark portions defective. The MEM module uses these programs
to implement the memory usage policy.

MF: Message Format Modules

There is one Message Format module for incoming messages and one for each
type of report generated by the buoy. All programs that know the structure,
format details and information content of any given message belong to these
modules.

The report-generation modules contain programs that build a message and

put it in a buffer.

The incoming message module consists of programs that determine the

message type and find pertinent information in the message.

MO: Monitor Modules

Each module allocates the use of one type of resource, such as buffers,

receivers or transmitters. CPU time is not handled by a monitor module.

Monitor interfaces include programs to grant exclusive or shared use of
the resource and to allow programs to relinquish use of the resources.

4 MI: Message Interpretation Module

This module knows the process that should be started in response to any

type of incoming message. It is notified of the message type by the MF module.

PA: Processor Allocator Module

This module puts a process in control of a processor, i.e., registers are

loaded and control transferred to the task. The secret of the module is the
aspect of the architecture and the data structures relevant to task switching.

SOFTWARE ENGINEERING PRINCIPLES 14-39

14-25 July 1980

SEC. 14 /HOST-AT-SEA (HAS) SYSTEM

RC: Receiver Control Module

The receiver characteristics that are visible to the computer are the
secrets of this module. The RC programs are used by CC programs as they
monitor frequencies and receive messages.

The module includes programs to tune the device to a new frequency, detect
a message coming in on a specified frequency, and receive a character.

RS: Record Storage Module

This module holds the buoy database. Its secret is the representation of
the recorded values in storage.

This module includes programs used by other modules to update the values
and functions used to retrieve the values.

SC: Sensor Control Module

Hidden in this module are the sensor characteristics that might change if
we replaced one sensor with another that delivers the same information. The
programs that take readings from sensors are in this module; they know the
HAS-BEEN instruction sequences that perform sensor input and the hardware
defined memory location corresponding to each device.

This module includes programs to get a new value from a sensor and to run
a built-in test if the sensor contains self calibration circuitry. It also
includes programs to set or to check the operating status of a particular
sensor. Programs outside this module refer to sensors by names (e.g., first
air temperature sensor); the correspondence between name and the way the
actual device is addressed is known only inside this module.

SCH: Scheduler Module

This module schedules processes as they request processor time. It knows
processor capacity and the deadlines and priorities associated with different
processes. It uses the Processor Allocator Module to get a particular task
running.

SOR: System Organization Module

This module knows all the information needed to generate a working HAS
system. The values of various parameters, such as the number of sensors of
each type, the intervals at which sensor readings are taken, averages
computed, locations determined, reports broadcast, self-tests executed, and
other periodic functions performed, are hidden in this module. The module

14-40 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

HA Improved Modular Structure / Doc. HAS.3

also contains information such as the number of processes of different kinds

in the system, the number of processors, and the number of sensors of each

type.

The System Organization Module is used to generate specific HAS systems.

TC: Transmitter Control Module

The transmitter characteristics that are visible to the computer are

secrets of this module.

The module includes programs to transmit a character, tune the trans-

mitter to a new frequency, or change the power level.

TIM: Timer Module

This module is responsible for keeping track of events that must occur

regularly. It knows the time interval associated with each periodic task and
how to tell "real time". It notifies the Scheduler when a particular task

should be run.

TST: Performance Testing Module

This module knows the tests that must be performed to determine whether

the equipment performance is acceptable.

It has separate submodules for sensor checking, memory checking, and

computer function checking. Each submodule knows the range of behavior that
is acceptable for the corresponding component.

Theft nsog te snsubmodule uses Sensor Control and Record Storage

functio he sensor tesn or readings and averages used in its tests. Some

sensors have built in test circuitry that can be activated from the computer
and deliver results that can be read by the computer. The control of these

devices is a device property, and programs that are dependent on the charac-
teristics of the particular device are part of the sensor module. The test

module knows of their availability and uses them, but does so in such a way
that, were the device to be re aced by another that could execute similar

self tests but had a different computer interface, the test module would be

unchanged.

Conclusion

If CSD organizes its documents in accordance with the above structure,

both the documents and the software will be less sensitive to ciange.

-FA'ARE ENGINEERING PRINCIPLES 14-41

.1v 1980

HAS.4 A Structured View of HAS

EXAMPLE DESCRIPTION

Einar Newhire
Information System Specialist

Compucer Software Division
Naval Electronics Research Laboratory (NERL)

INTRODUCTION

Since I reported for duty here at NERL six weeks ago, I have been assigned
to review progress on the HAS software procurement. The contractor (CSD) has
submitted a Computer Program Design Specification (CPDS), including a set of
algorithms in ALGOL-like pseudo code, which is awaiting formal approval.
Because of the length of this approval process, ind the short timespan of the
project, they are now starting the detailed design of data structures and
specifications. It seems certain that the design will be approved since they
based it on existing functional aircraft software that CSD developed for the
MDADC (Melamine Desert Air Development Center).

During the review process, I heard many complaints about the complexity of
the documents and the difficulty of keeping track of what is going on as one
traces through the program text. CSD personnel constantly assure us that this
is necessary in real-time software using HAS-BEEN computers. They point out
that all real aircraft software has these characteristics and that no one can
suggest a better way.

The nurpose of this memo is to suggest a better way. It is based on a
course I took at New Haven University from Professor E. Seawaller on process
synchronization. It is also based on structuring concepts, such as stepwise
refinement and structured programming.

PROCESSES

Professor Seawaller defines a process as a subset of the events in a
system. He is interested in sequential processes within which the ordering of
the events is obvious and easily determined.

Seawaller is very fond of trains and often uses the following analogy to
clarify the concept of sequential processes. Consider a large railway switch-
ing yard with several trains entering and leaving at any given time. The
events are cars entering the yard. Since the trains are moving at different
speeds, slowing down, speeding up and stopping, the order of events in the
whole yard cannot be predicted. However, the order of events is easily
predicted for a single train: th f;rst car _nters th3 yard before the second,
the second before the third, and o on. Therefore. a train entering the yard

SOFTWARE ENGINEERING PRINC'P F 14-43
14-' 5 J7tly 19q10

. d..k. -I

, --_- -

SEC. 14 /HOST-AT-SEA (HAS) SYSTEM

is a sequential process: it is a subset of the events in the system in which
the order is easily deermined.

Writing programs on a "per-train" basis allows us to take advantage of the
ease of predicting the sequence of vents. The programs are easy to understand
because the order of events makes sense. Programs written on a "process next
event" basis are hard to understand because we must deal with an unpredictable
sequence of events, where the order is sometimes significant and sometimes not.

The price we pay for the luxury of considering only one process at a time
is that each program must include some commands whose only function is to
ensure that the processes cooperate harmoniously. We must include commands to
make sure that two different processes do not try to update the same variable
at the same time because this could result in an erroneous count. These
commands may cost us a little execution time, but the benefit of easily
understood code is well worth it.

HAS AS A SET OF PROCESSES

The contractor describes HAS as a single process switching its attention
from looking at a sensor to preparing part of a report to checking the clock
to looking at another sensor to updating an average to It struck me that
this is much the way a railway yard program would look if we did it on a per-
event basis rather than a per-train basis. I think that part of my difficulty
understanding the current HAS description is caused by the program being in
the middle of so many different things at a time. Also, the order of some of
the tests and data modifications is sometimes arbitrary, and sometimes

4 essential for correct functioning. It is hard to tell which is which without
very careful analysis, making it even harder to understand the program.

If we are to be able to apply the ideas in Seawaller's course, we must
first deal with a problem that he never discussed: we must divide HAS into
processes before we can worry about their synchronization. Some of the
processes for HAS are described briefly below, and abstract programs for all
the processes in the system are included in an appendix.

First we have one process to read each sensor. These sensor reader
processes execute the sensing instruction and put the data in core. They
repeat that simple sequence forever. The frequency of repetition depends upon
the nature of the sensor, but in most cases it will be done at regular inter-
vals and must be executed punctually to achieve accurate time averages.

Instead of raw sensor readings, most of the progra.s use averages over
time to minimize errors caused by nois~y readings. I would include another set

ofprocesses to read the data stored in core by the sensor readers and compute
the tables of average readings used by other programs. I felt rather uncer-
tain nbout this second set of processes because it seemed as if the single
proc- s, "read sensor; coml.'te average" would fit the predictable-sequence
critp;ion fur a sec'xential process: clearly, the sensor had to be read before
the average could be calculated. I separated the two because I realized that
reading the sensor is time critical, but calculating the average is not. If

14-44 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

A Structured View of HAS / Doc. HAS.4

HAS gets many requests at once, processor time might get short. It would be
important to continue making punctual sensor readings, but it would not be
essential to keep up with computing the averages. Putting both actions in a
single process forces an all-or-nothing approach to the sensor. In my
proposal, the sensor reader processes will place their readings in core
buffers; the averagers will empty the buffers. In moments of time pressure,
we'll let the averaging ?rocesses get behind in their work but keep making the
readings on time.

A process can be assigned to calculate each of the required system values.
By using a separate process for each value, one can treat some as more urgent
than others and avoid making arbitrary sequencing choices when writing the
program.

A single process sends the reports that are due every 60 seconds. Since
all of the data is prepared by other processes, this process is very simple:
it is awakened by the clock, sends its report, and then returns to its resting
state.

For each of the requested reports, we will have a report generator process
waiting for the request. Since reports are needed quickly, we will have
background processes keeping the data up-to-date with whatever computer
capacity is available. The actual report process need only work on demand:
it is awakened, generates the report, and returns to its resting position.

CONCLUSIONS

The above discussion is the basis for the enclosed HAS design. The design
description includes a diagram of processes and buffers and a set of abstract
programs for the individual processes.

As the abstract programs show, the individual processes are controlled
by programs that are extremely simple; one might even call them obvious or
trivial. Fine: that increases the likelihood that they are correct or at
least that we will notice errors. All of the synchronization problems are
standard problems dealt with in operating system textbooks (e.g., Shaw 1974).
As a result) we can have faith in their correctness.

In addition to ease of understanding and verification, there is a side
benefit. The design is more easily changed. There are obvious techniques for
adding sensors, reports, etc., without changing the existing programs. For
example, one can easily add or remove sensor-reader processes if the sensor
configuration changes. Sea%.aller also claims that this type of structure
makes it easy to change the number of central processors in a system.

It is my proposal that CSD's CPDS for HAS be rejected, and that they be
asked to follow the design in the enclosure.

E. Newhire

SOFTWARE ENGINEERING PRINCIPLES 14-45
14-25 July 1980

SEC. 14 /HOST-AT-SEAL (HAS) SYSTM~.

re ds o s uf a v e ra g e rs av bu f (s) l t r

Updater write Data-
base

symbol Key:

rocess, or group

(s): number depends
Buffo r or groupon number of sensors
of related

(t): number depe.ndsbufr

0on number of sensor bu)ffer
type[(see left)

14-25 July 1980

A Structured View of HAS /Doc. RAs.4

gvenerators rptbuf(r) otransmitter

Data- cosremergency
base message

startindicator

loainmessage sat emergency emergency
corrcato loccorbuf inter-butnuto

emergency

SOFTWARE ENGINEERING PRINCIPLES 14-47
14-25 July 1980

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

sensor reader:
reentrant program srdr(sensnum,okfcn, fetfcn,buff,sem);
comment This program reads a sensor and stores the result in an observation

buffer.

sensnum: sensor number identifying individual sensor of a particular
type

okfcn: function to test operation of the sensor

fetfcn: function to retrieve a sample from the sensor
buff: observation buffer to insert sample into

sem: semaphore to wait on for scheduling

Typical parameter values:

sensnum okfcn fetfcn buff sem sensor type

I to 3 okat fetst atobsbuf ats air temperature
1 to 5 okws fetws wsobsbuf wss wind speed
1 to 5 okwd fetwd wdobsbuf wds wind direction
I okom fetom omobsbuf oms Omega
1 okwtl fetwtl wtlobsbuf wtls water temperature,

depth 1
1 okwt2 fetwt2 wt2obsbuf wt2s water temperature,

depth 2
1 okwt3 fetwt3 wt3obsbuf wt3s water temperature,

depth 3;

parameter integer sensnum;
parameter procedure okfcn, fetfcn;
parameter buffer array buff (1:5];
parameter semaphore array sem [1:51;

tegin private integer obs;
while true do

P(sem[sensnum]);
if okfcn (sensnum) then

obs:= fetfcn(sensnum);
deposit(obsbuff(sensnuml);

end;
end-if;

end;
end-while;

end;

Note: There is a cross reference table for semaphores and buffers at the end

of the document. The remaphore table shows which processes call P or V
operations for each semaphore. The buffer table shows which processes
call Accept or Deposit for each buffer.

14-48 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

="" ' _ _ _ _ i11 l. .. m

A Structured View of HAS / Doc. HAS.4

intermediateaverager:
reentrant program intavg(sensnum,n,okfcn,obsbuf,avbuf);

comment This program obtains sensor readings from an observation buffer,
computes an average, and puts the average into an avbuf.

sensnum: sensor number
n: number of readings to average

okfcn: function to determine the status of a sensor
obsbuf: buffer containing samples
avbuf: buffer to insert average into

Typical parameter values:

sensnum n okfcn obsbuf avbuf sensor type

1 to 3 4 okat atobsbuf atavbuf air temperature
I to 5 4 okws wsobsbuf wsavbuf wind speed
1 to 5 4 okwd wdobsbuf wdavbuf wind direction;

parameter integer sensnum, n;

parameter procedure okfcn;
parameter buffer array obsbuf [1:5];
parameter buffer array avbuf (1:51;

begin private integer nextobs, temp, sum;
while true do
begin

if okfcn(sensnum) then

sum:= 0;
nextobs:= 0;
while nextobs It n do

nextobs: = nextobs + 1;
accept(temp,obsbuffsensnuml);
sum: f sum + temp;

end;
end-while;
deposit(sum/n,avbuffsensnum);

end;
end-if;

end;
end-while;

end;

SOFTWARE ENGINEERING PRINCIPLES 14-49

14-25 July 1980

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

average calculator:
reentrant program avgcal(numsensors,okfcn,avbuf,upbuf);
comment This program computes the average reading over all sensors of a given

type. The sensor readings are obtained from an avbuf and the

averages put into an upbuf.
numsensors: number of sensors
okfcn: function to determine if sensor is working properly
avbuf: buffer containing readings
upbuf: buffer to store averages into

Parameter values:
okfcn avbuf upbuf numsensors sensor type

okat atavbuf atupbuf 3 air temperature
okws wsavbuf wsupbuf 5 wind speed

okwd wdavbuf wdupbuf 5 wind direction
okwtl wtlobsbuf wtlupbuf 1 water temperature, depth 1

okwt2 wt2obsbuf wt2upbuf 1 water temperature, depth 2

okwt3 wt3obsbuf wt3upbuf 1 water temperature, depth 3

parameter integer numsensors;
parameter procedure okfcn;

parameter buffer array avbuf [l:numsensors];
parameter buffer upbuf;

begin private integer nextobs, sum, average, numobs, temp;

while true do

sum:- 0;
nextobs:= 0;
numobs:= 0;
while -2xtobs It numsensors do

nextobs:= nextobs + 1;

if okfcn(nextobs) then

begin
numobs: = numobs + 1;

accept(temp,avbuf[nextobs]);

sum:= temp + sum;
end;

end-if;
end;
end-while;

if numobs Et 0 then

average:= sum / numohs;

deposit(average,upbuf);
end;

end-if;
ind;
end-while;

end;

14-50 SOFTWARE ENGINEERING PRINCIPLESL_ 14-25 July 1980

9 . -_____

A Struc~tured View of HAS IDoc. HAs.4

(location calculator:
program loccal;
comment Calculate location from an Omega reading. The reading is obtained

from the Omega observation buffer (omobsbuf) and the calculated
location is put into the location update buffer (locupbuf);

global buffer omobsbuf,locupbuf;

begin private integer temp, location;
while true do

location:= omega calculation(termp);
depositC location, locupbuf);

end;
end-while;

end;

updater:
program updr;
comment This program updates the database from updated values obtained from

the update bufers (xxupbuf, where xx is at, vs, vd, loc, wtl, wt2p
or wt3);

global integer numdepths;
71obal buffer atupbuf,wsupbuf,wdupbuf,locupbuf,wtlupbuf,wtzupbuf,wt3upbuf;
begin private integer atval, wsval,wdval, locval, wtval~l:numdepths];

while true do
begi

accept(atval,atupbuf);
accept(wsval,wsupbuf);
accept(wdval,wdupbuf);
accept(locval, locupbuf);
accept(wtval(l),wtluipbuf);
accept(wtval(2) ,wt2upbuf);
accept~wtval(3) ,wt3upbuf);
addframe(atval,wsval,wdval,loc-val,wtval);

end;
end-while;

end;

SOFTWARE ENGINEERING PRINCIPLES 14-51
14-25 July 1980

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

receiver:
reentrant program rcvr(synch,treq);
coimnent This program receives messages and inserts them into the messagebuffer.

synch: semaphore to signal that it is time to check for a message
freq : desired monitoring frequency

Typical parameter values:

synch fe

afrcv 160000

sfrcv 300
satfrcv 180000;

ccmment Note that obtainrcvr and releasercvr are monitors controlling access
to the set of receivers. No other programs even know how many
raceivers there are;

parameter semaphore synch;
parameter integer freq;
global buffer msgbuf;
b nprivate string msg; private boolean msg_detected,

end of-message; private char rchar;
private integer rcvrnum;

while true do

begin
P(synch);
rcvrnum:= obtainrcvr(freq);

msgdetected:= signal _detected(rcvrnum)
if msg detected then

initmsg(msg);
end of message: = false;
while not end ofmessage do

begin
rchar: = receive(rcvrnum);

set _nextchar(msg,rchar);
if rchar = "eom character" then

endof_message: = true;
else end of -ressage:= false;

end-if;
end;
end-while"
deposit(m. o,,msgbuf);

end;
end-if;
releasercvr(rcvrn m);

end;
end-while;

end;

14-52 SOFTWARE ENGINEERING PR'NCIPLES
14-25 July 1980

A Structured View of HAS / Doc. HAS.4

message_interpreter:
program msgint;
comment Examine incoming message to determine desired action. Messages are

obtained from the message buffer. If the message is a report
request, the appropriate request variable is incremented and the
report scheduler is signalled. If the message is a location
correction, the location is put into the location correction buffer
(loccorbuf). If the message is a request to change the emergency
light or message, the appropriate process is signalled;

global buffer msgbuf, loccorbuf;
global semaphore elon, eloff, emoff, reptsched;
begin private string message; private boolean rept request;

global integer shipreptreq, airreptreq, hist reptreq;
while true do

reptrequesc:= false;
accept(message ,msgbuf);
case fetmsgtype(message) of

//shipreq//

shiprept req:= ship rept req + 1;

rept request:= true;
end;

//airreq//

air reptreq:= air rept req + 1;

rept request:= true;
end;

//histreq//

histrept req:= hist reptreq + 1;
rept request := true;

end;
//emlighton//

V(elon);

//emlightoff//
V(eloff);

//emmsgoff//
V(emoff);

//locupdate//
deposit(findloc(message), loccorbuf);

end-case;
if rept request then

V(reptsched);
end-if;

end;
end-while;

end;

SOFTWARE ENGINEERING PRINCIPLES 14-53

14-25 July 1980

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

regular reportstarter:
program regrepstart;
comment Decide whether periodic report or emergency report should be

broadcast based on status of emergency message indicator. Signal the
report scheduler;

global semaphore rrs,reptsched;
begin global boolean embc;

while true do
b oal integer sos rept_req, ?eriodic rept req;
Prrs)-
if embc then

sosrept req: = sos reptreq + 1;
else

periodic reptreq:- periodic rept req + 1;
end-if;
V(reptsched);

end;
end-while;

end;

14-54 SOFTWARE 'FNIINEERING PRINCIPLES
14-25 July 1980

_ _ _

A Structured View of HAS / Doc. HAS.4

report_scheduler:

program reportsched;
comment This program ensures that reports are transmitted in the required

order. When the report scheduler is signalled, each report request
variable is checked and its corresponding report generator is

signalled if a request is outstanding. Th. semaphore "bcast" should
be initialized to the number of simultaneous broadcasts that can be
made;

begin global boolean sos reptreq, airrept req, shipreptreq,
periodic _rept_req, histreptreq;

while true do

P(reptsched);
P(bcast);
if sos_rept_req gt 0 then

sos_rept_req:= sosrept req -

V(sosrept);
end;

else if air rept req gt 0 then

air rept req: = airrept req -

V(airrept);
end;

else if ship_reptreq gt 0 then

ship rept req: = ship_reptreq - 1;
V(shiprept);

end;
else if periodicrept_req gt 0 then

periodic rept req:= periodicreptreq - 1;

V(periodicrept);
end;

else if histreptreq gt 0 then

hist reptreq:= histreptreq - I;
V(histrept);

end;
end-if;
end-if;
end-if;
end-if;
end-if;

end;
end-while;

end;

SOFTWARE ENGINEERING PRINCIPLES 14-55

14-25 July 1980

AD-AO87 997 NAVAL RESEARCH LAB WASHINGTON DC F/G 9/2
SOFTWARE ENGINEERING PRINCIPLES. (U)

UNLSIID JUL 80 L J CHMURA. P CLEMENTS, C L HEITMEYER N

I LASIE

H~ - 32 111111.~5

111I15 11111___ 1.6

MICROCOPY FOSOLUTION If Sl CHIART
V.TN .. in k

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

emergencyreport generator:
program eoreportgen;
coment Add time-dependent information to emergency report and put it in the

emergency reporz buffer;
global semaphore sosrept;
global buffer erptbuf;
begia private character string;

while true do

Pssrept) |

string:- format("(9Hsos from ,AlO)",fetemreport);
deposit (string,erptbuf);

end;
end-while;

end;

air report_generator:
program airreportgen
conment Generate an air requested report by taking the necessary data from

the database and enclosing it with any required delimiters. Store
strings in arptbuf for the transmitter;

global semaphore airrept;
global buffer arptbuf;
begin private string string;

while true do

P(airrept);
string:- initmsg("a");
deposit(string, arptbuf)
string- format((9fair temp =,14)",fetatemp);
deposit(string,arptbuf);
string:- format("9Rwind dir=,A30",fetwdir);
deposit(string,arptbuf);
string:- format("(llHvind speed =,T4)",fetvspeed);
deposit (string,arptbuf);
string:- end of message;
deposit (stringarptbuf);

end;
end-while;

end;

14-56 SOFTWARE ENGINEERING PRINCIPLES
~ 14-25 July 1980

14-56~~ .OTWR .NIERN .P.L.

-d A Structured View of HAS / Doc- HAB.4

history report-generator:
program histreportgen;
coumment Generate a history report by taking the necessary data from the

database and enclosing it with any required delimiters. Store
strings in hrptbuf for the transmitter;

global semaphore histrept;
global buffer hrptbuf;'
begin private string string;

while true do
egin

P(histrept);
string:= initmsg("h");
deposit string,hrptbuf);
while not histcomplete do
begin

string:- format("(9Hair temp-,14)",histatemp);
deposit(string,hrptbuf);
string:- format("(9Hwind dirm,A3)",histwdir);*
deposit(string,hrptbuf);
string:= format("(lllivind speed-,14)1",histwspeed);
deposit(string,hrptbuf);
string:- formnat("(2OlHwater temp at depth ,14,1 lR-,13)",

histdepthl ,histwtempl);
deposit(string,hrptbuf);
string:- format("(2OlHvater temp at depth ,14,IH-,I3)",

histdepth2 ,histwtemp2);
deposit(string,hrptbuf);
string:- format("(2Olivater temp at depth ,14,IHR,13)",

histdepth3,histvtemp3);
deposit(string,hrptbuf);

end;
end-while;
string:- end of message;
deposit string,hirptbuf);

end;
end-while;

end;

SOFTWARE ENGINEERING PRINCIPLES 14-57

14-25 July 1980

SEc. 14 / HOST-AT-SEA (HAS) SYSTEM

periodic report_generator:
program perreportgen;
comment Generate a periodic report by taking the necessary data from the

database and enclosing it with any required delimiters. Store
strings in prptbuf for the transmitter;

global semaphore periodicrept;
global buffer prptbuf;
begin private integer nexttime; Private string string;

while true do

jer ad icre pt) ;

string:- initmsg("p");
deposit(string,prptbuf);
string:- format("(9Hair temp-,14)",fetatemp);
deposit(string,prptbuf);
string:- format("(9Hwind dir=,A3)",fetwdir);
deposit (string,prptbuf);
string:- format("(llHwind speed-,14)",fetvspeed);
deposit(string,prptbuf);
string:- format("(20water temp at depth ,14,lH 13)",

fetdepthl, fetwtempl);
deposit(string,prptbuf);
string:- format("(20Hwater temp at depth ,14,IH=,13)",

fetdepth2, fetvtemp2);
deposit(string,prptbuf);
string:- format("20Hwater temp at depth ,14,1H-,13)",

fetdepth3, fetwtemp3);
deposit(string,prptbuf);
string:- end_of message;
deposit(string,prptbuf);

end;
end-while;

end;

14-58 SOFms ARE 3iIN GRING PRNCIPLIs
14-25 July 1980

A Structured Viev of HAS IDoc. HAS.f

ship__report_generator:
program shipreportgen;
cosmment Generate a ship requested report by taking the necessary data fromI the database and enclosing it with any required delimiters. Store

strings in srptubf for the transmitter;
global semaphore shiprept;
global buffer srptbuf;'

bgnprivate string string;
while true do

P(shiprept);
string:- initmsg("ls");
deposit string, srptbuf);
string:- format("(9Hair tempu',14)",fetatemp);
deposit string,srptbuf);
string:- format("(9liwind dir-,A3)",fetwdir);
deposit string,srptbuf);
string:- format("(llHvind speed-n,14)I,fetwepeed);
deposit(string,srptbuf);
string:. format("(2OHwater temp, at depth ,14,1H-,13)",

fetdepthl, fetwtempl);
deposit(string,srptbuf);
string:- format("(2Oliwater temp at depth ,14,Ifl,13)",

fetdepth2, fetvtemp2);
deposit(string,srptbuf);
-string-. format("(2Oflwater temp, at depth 1,ThIH-,13)",

fetdepth3, fetwtemp3);
deposit(string,srptbuf);
string:-n format("(6Hdriftin,I3)",fetdrift);
deposit(string, srptbuf);
string:- end -of message;
deposit(string,arptbuf);

end;
end-while;

end;

SOFTWARE ENGINEERING PRINCIPLES 14-59
14-25 July 1980

- - - - r

SEC. 14 / HOST-AT-SEA. (HAS) SYSTEM

transmitter:
reentrant program xmit(freq,rptbuf);
coment This program broadcasts a report. The report contents are obtained

from the buffer rptbuf.
freq : frequency to broadcast report on
rptbuf: buffer containing the report contents

Typical parameter values:

rptbuf freg report type

prptbuf 5000 periodic report
arptbuf 161000 aircraft report
erptbuf 5100 emergency report
srptbuf 300 ship report
hrptbuf 5100; history report;

parameter integer freq;
parameter buffer rptbuf;
global semaphore bcast;

begin private char char; private integer xmitrnum;
while true do

accept(char,rptbuf);
xmitrnum:- obtainxmitr(freq);
aend(xmitraum,char);
while (char ne "end of report character") do

accM(char,rptbuf);
sendk(xmitrnum, char);

end;
end-while;
releasxitr(xnitrnum);
V(bcast);

end;
end-while;

end;

14-60 SOFTARE ENGINEERNG PRINCIPLES
14-25 July 1960

A Structured View of UAS /Doc. HAS.4

location-corrector:

program loccor;
comment Obtain locations from the locorbuf buffer and the history database.

Check to see if the difference is greater than tolerance. If so,
start the diagnostics. Update the location in the history file;

global buffer locorbuf;
begin private integer location, dblocation, tol;

tol: "maximum acceptable error in location";
while true do

accept(location, locorbuf);

dblocation:- fetloc;
if compare(location,dblocation) It tol

then locrec(location); comment diagnostics program
end-if;
sietloc(location);

end;
end-while;

end;

emergency_button_poller:
program embuttonpol;
comment Check to see if the emergency button has been pushed; if so, set

emergency message indicator so future periodic reports are replaced
by emergency broadcasts and signal the regular report starter;

global semaphore ebp,rrs;
begin global boolean embc;

while true do

P(ebp);
if fet embutton then

embc: = true;
V(rrs);

end;
end-if;

end;
end-while;

end;

i.
SOFIWAI ENGINEERING PRINCIPLES 14-61
14-25 July 1980

_~~~~~A -MC,__ a u,

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

emergencyjmessage reset:
program eirmgreset;
comment Turn off emergency message indicator;
global semaphore emoff;
begin global boolean embc;

while true do

eubc:- false;
end;
end-while;

end;

emergency-light,_on:
program emlighton;
comuent Turn emergency light on;
begin global semaphore elon;

while true do

Velon);
set_ealight(on);

end;
end-while;

end;

emergency_light off:
program emlightoff;
cosment Turn emergency light off;
begin global semaphore eloff;

while true do
begi

P(eloff);
set emlight(off);

end;
end-while;

end;

14-62 SOTWAREZ NGINII PRINCIPLIS
14-25 July 1980

A Structured View of HAS / Doc. HS.4

Semaphore P Called by V Called by

airrept air_reportgenerator report scheduler
ats(i) sensor reader periodic scheduler*
bcast report scheduler transmitter
eloff emergencylight off message-interpreter
elon emergency_light on message_interpreter
emoff emergency.message_reset messageinterpreter
epb emergencybuttonjpoller periodic scheduler
histrept historyreportgenerator report scheduler
oms sensor-reader periodic scheduler
periodicrept periodic report generator regular report starter
reptsched report_scheduler message-interpreter

OR regularreport starter
rrs regularreportstarter periodic scheduler

OR emergency_button_poller
shiprept ship_report_generator report scheduler
sosrept emergency_reportgenerator reportscheduler
synch receiver periodic scheduler
wds(i) sensor reader periodic scheduler
wss(i) sensor reader periodic scheduler
wtls(i) sensor reader periodic scheduler
wt2s(i) sensor-reader periodic scheduler
wt3s(i) sensor-reader periodic scheduler

Buffer Accept called by Deposit called by

**&_obsbuf(i) intermediate__averager sensor-reader
omobsbuf location calculator sensor reader
&_avbuf(i) average-calculator intermediateaverager
locupbuf updater location calculator
&_upbuf updater average_-calculator
msgbuf messageinterpreter receiver
loccorbuff location corrector messageinterpreter
emrptbuf transmitter emergencyreportgenerator
arptbuf transmitter air-report generator
hrptbuf transmitter historyreportgenerator
prptbuf transmitter periodicreportgenerator
srptbuf transmitter ship reprt enerator

* periodic scheduler not described in this document
& A& represents at

ws
wd
wtl
wt2
wt3

SOFTWARE ENGINEERING PRINCIPLES 14-63
14-25 July 1980 14

HAS.5 Academic Poppycock

EXAMPLE DESCRIPTION

0. U. De Zeeman
Computer System Distributors, INC.

Melamine Desert, California

0. Introduction

Every few years those of us who have been toiling at the production of
real-time software for relatively small and slow computers are attacked by
newly hired youngsters. Still wet behind the ears and fresh from their "alma
mater," they accuse us of producing old-fashioned (now its called unstructured)
software. Annoyed by their inability to comprehend instantly programs that
have taken years to develop, they attack rather than waiting to learn. They
interpret the confusion caused by their own lack of experience with real-world
software as a confusion caused by muddy thinking on the part of the people who
made the software work.

Einar Newhire's memorandum, "A Structured View of HAS" is a perfect
example of the phenomenon. Normally, we just ignore such memos and get on
with our work. This one, however, is being taken more seriously than most
(perhaps because the name Seawaller has become a household word). For that
reason, and because it does happen every year, : have decided that it is
worthwhile recording the errors in the Newhire paper. This document can be
reissued each time that a new youngster arrives from some ivory tower.

There are three basic faults with the "structured view" which I will
discuss in depth:

I. It is an oversimplification -- important problems are simply omitted,

2. There are technical problems in implementing the concepts -- run-time
and memory usage become excessive,

3. It restricts the designer too much -- making his work harder when it
is hard enough already. Development costs will increase if we go
that route.

SOFTWARE ENGINEERING PRINCIPLES 14-65
14-25 July 1980

=i ._ _ •

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

1. over.simplificat ions

1.1. Omissions

One of the easiest ways of making a computer system or language appear
simple and obviously correct is to leave out the hard parts. I do not mean
eliminating the hard parts by replacing them with a powerful mechanism; I mean
ignoring them in the description. This is a ploy commonly used by professors
who write textbooks or tutorial papers on complex systems. They are often
complimented on their ability to find a simple description of a system pre-
viously thought to be too complex for students to understand. It is only when
one attempts to apply the knowledge that one gets from such papers that one
discovers that essential information has been omitted and that essential
problems have been ignored.

In the case of the Newbire paper, the omission technique has been applied
in spades. The paper is written as if all that HAS software has to do is read
sensors and write reports. The real HAS software is going to be much more
complex because it does more. Among other things, the real software must:

a. allocate memory,
b. allocate registers,
c. keep track of the real-time clock,
d. estimate processor time for completion of incomplete tasks,
e. calculate deadlines,
f. make priority decisions for processors and data areas.

None of these problems is even mentioned in the "structured view"
document. It is no wonder that the document has an appealing simplicity.

1.2 Unrealistic distribution of emphasis

Another ploy used by academics in the "structured view" game is to
emphasize the simple things. The newer operating systems textbooks devote 70Z
or 801 of their space to discussing perhaps 20% of the actual code in an
operating system. These books spend most of their time discussing the easier
things in depth (mutual exclusion, producer/consumer) but the actual imple-
mentors spend their time on device handlers, device error analysis, data
organization, directories, file systems, etc. The academic may say fervently,
"We have to stop thinking in terms of unpredictable interrupts and start
thinking in terms of cyclic processes," but the programmer spends a lot of his
time writing the interrupt-handling routines anyway.

The same phenomenon occurred in the HAS-structured view paper. The
HAS-BEEN computer does not have interrupts; if it had, I would have had one
more item for my list of omissions. Because of that, a great deal of code is
going to be devoted to scanning input registers checking for conditions that
would cause interrupts on more modern computers. I am sure that both Seawaller
anid Newhire would dismiss this with a "We'll do that in our lowest level," and
then go on to talk about a new problem in asynchronous prograimming. Meantime,

14-66 SOFTWrARE ENGINEERING PRINCIPLES
14-25 July 1980

Academic Poppycock /Doc. HAS.5

we have to write our polling code and make sure that it gets done in all
sections of the programs.

1.3 Implementation of processes ignored

Another illustration of the fact that "A Structured View" is an over-
simplification is the issue of the processes. The paper is written as though
processes existed already. It ignores the fact that by introducing the
concept of processes one has added an implementation problem to the set of
things to do. Processes have to be represented by data structures; they have
to be synchronized;-they have to be scheduled. That doesn't happen by magic;
it happens by cod#.U Some of that code might not even be needed if we did not
think in terms of processes.

1.4 Interprocess interfirence

Another example of this oversimplification is the way Newhire handwaves
about interference between processes. He blithely has some processes writing
in a data structure while others read from it. He acts as if the problem with
that is easily solved. Here, he is ignoring even those problems that academics
know about. Before I got disgusted with the whole thing, I remembered that a
heated debate appeared in the literature about various ways of solving just
that one problem. If the Government forces us to go the "structured r:oute" on
HAS, they'll discover the reader-writer problem later. Newhire didn't think
it important enough to bring it up now, before the decision.

2. Technical problems

2.1 Space requirements for many processes

Newhire's approach is based on having many little processes. He overlooks
the fact that, in implementing these processes, he is going to have to reservea large block of space for each of them. Each process is represented by a
data structure that describes both the code that controls the process and the
data that the process uses, to say nothing of the data needed to schedule it.
Lots of processes -- lots of space. Lots of similar processes -- lots of
duplicate data. On a HAS-BEEN computer we can't- afford it.
2.2 Unpredictable delays produced by process synchronization

The process synchronization widels that Newhire cites were developed for
multiprogramming, not real time. Dijkstra clearly considers the speed of a
program to be unimportant. Brinch Hansen has dismissed arguments against his
conditional critical sections because they relate to "extreme real-time"
situations. Well, in our situation, we are in a real-time situation, possibly
even an extreme one, given the incredibly slow speed of HAS BEEN. The process
synchronization concepts deal with all processes as if they were the same.
They are simple because they do not distinguish between processes. An urgent
process and a normal process might be on the same queue and the urgent one
might then be delayed. If all that you care about is the state at the end of
the computation, that's fine. But that's not all that we care about.

SOFTWARE ENGINEERING PRINCIPLES 14-67
14-25 July 1980

.aliiii

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

2.3 Process switching time overhead

Every time a process has to be scheduled or rescheduled, time must be
spent in the process scheduler. Because of the slowness of the HAS BEEN, we
can ill afford such switching overhead.

2.4 Size of the minimal system

Seawaller may be the name most cotmmonly associated with the process
concept, but Brinch Hansen has actually gone much further. He has written a
how-to-do-it book that everyone can follow; he has built systems. By looking
at those systems, one can see yet another aspect of the problem. At a recent
meeting in San Francisco, Brinch Hansen admitted that the most trivial system
required 6000-7000 words. To that amount we must add all of the real code and
the data structures described above. Perhaps with a large machine like a
PDP-11 that is acceptable, but with the HAS-BEEN computer it is not.

2.5 Procedure call overhead

A general problem with structured approaches to software is their reliance
on procedure calls to keep things simple. Procedure calls require a great
deal of environment changing (register saving and restoring). In real-time
systems with outdated computers we cannot afford that.

2.6 Inability of the program to take actions conditional on real-time

Key to the process concept is that each process continues in its sequence
of actions irrespective of the exact rate of progress. One of the "other
processes" in our situation is the advance of real time. There are numerous
cases in systems like HAS where an action will be taken only if time permits
and will be curtailed when time is scarce. The simplest example is the self-
test code, which Newhire doesn't even bother to describe. We do it whenever
we have spare time. All of the self-test routines check the real-time clock
and relinquish control when time does not permit the test to go on. Programs
written using Newhire's approach could not do that.

3. Increased development costs

Most of the structured prograimming missionaries imply or claim that
development costs may be reduced by such methods. Strangely enough, there is
no solid experimental evidence in that direction. People have published data,
but it's like comparing lightbulbs and pears. In some cases productivity
increases but the quality of code goes down. In other cases, the cost of the
language development is written off in a research budget. Even in cases where
the same job has been done twice, we are left without hard evidence becausd
doing a job the second time is not doing the same job. In the sequel, I wiew
to argue that a structured approach can actually increase development costs.

14-68 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Academic Poppycock / Doc. HAS.5

3.1 Structuring restricts the progranmmer thereby making his job harder.

Working on real-time software is, in some ways, very much like surgery.
One has to work very, very carefully and use one's complete knowledge of the
system's anatomy. Just as a surgeon cannot perform an appendectomy without
some knowledge of the circulatory system, the real-time programmer cannot work
on a program to record sensor data without knowledge of the memory allocation
policy. If we asked the surgeon to perform his operations in such a way that
it would work even if the patient's circulatory system were changed, we would
be making his job much harder -- perhaps impossible. The real-time
programmer's job is hard enough -- why make it harder?

3.2 Reversing early design decisions

Parnas has pointed out that the most critical design decisions are those
made early in the project because later decisions are based on the earlier
ones. Reversal of the earlier decisions is costly because it implies recon-
sideration and possible reversal of all later decisions, The Newhire approach
represents a design decision that he wants us to make early in the project.
Subsequent reversal of that decision will be very costly. The reversal is
inevitable because we need the control that he wants to deny us.

Throughout structured programming one makes decisions on the assumption
that future decisions can be ignored. Correcting errors will be very
expensive.

3.3 There will be extra documentation costs

If we take the Newhire approach, we will start out documenting a
fictitious "virtual" system. We will then start to refine that design
(following the precept of stepwise refinement). Each refinement will have to
be completely documented. If we were to bypass this documentation, no one
would understand what was going on in the abstract programs. At each new
stage the old information must be included again. If we just write our
program, we only have to document the decision once. Moreover, SECNAV INST
3560.1 will cause us to write yet another set of documents because it does not
allow "abstraction"

3.4 Repeated testing

Testing is a necessary process in software development. No one in his
right mind believes a program if it has not been run. Newhire 's memo already
contains some programs. They have to be tested. Testing such programs is not
easy because we'll have to simulate the missing operations. Worse, this
testing process should be repeated with each refinement. With conventional
programming, you only have to test when you finish the subprogram and once
more at integration.

SOFTWARE ENGINEERING PRINCIPLES 14-6Q
14-25 July 1980

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

3.5 More source code will be produced

Even academic papers have shown that structured programing tends to lead

to bigger programs. More code, more cost.

Conclusions

When university computer science departments were first proposed, many

opposed them on the grounds that the graduates would have no basic training
in either fundamental mathematics or engineering techniques. They would have
learned theoretical approaches that had not been proven. Nothing personal,
mind you, but Einar Newhire is just such a graduate. He would be more useful
to us if he had never heard of a computer. Then he would come here without
ridiculous ideas, and we could have taught him what he needs to know. He's a
bright guy who has been brainwashed. Maybe this paper will cause him, and his
ilk, to see the light and to recognize the "structured view" for the academic
poppycock that it is.

The CPDS that we submitted for HAS is an unusually complete piece of

documentation. It is unfair but typical for Newhire to complain that it is

too complex: thorough documentation of real-life programs contains many
details that academics tend to "abstract away" in their programs.

In the meantime, the government must look at the track record. Our

approach, whatever its faults, has produced programs that fly. The structured
approach has not. Until a real project has been successfully completed using
the structured approach, no project manager in his right mind will bet on it.

14-70 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

HAS.6 Separation of Concerns

EXAMPLE DESCRIPTION

Eric W. Seawaller
New Haven University
(submitted to SIGOPS)

Introduction

Professor E. W. Dijkstra has introduced two distinct topics into the
computer literature:

(1) process synchronization: how to write programs that control several
computations proceeding "in parallel" at unknown relative speeds,
given that these computations share variables and other resources

(1968a; 1968b).

(2) separation of concerns: how to organize a program so that

programmers need not think about too many things at one time (1968b;
1972; 1976).

The purpose of this note is to relate these two fields of study, showing
how "separation of concerns" can help us evaluate synchronization and resource
allocation control structures.

This thesis is not new. Dijkstra's original T.H.E. operating system
papers (1968b) clearly indicate that he introduced process synchronization to
confine the processor allocation policy to one portion of his system. He
stated that a change in the number of processors would impact only one level
of his hierarchical structure. In this paper, I want to take real-time
constraints into account and discuss some limitations they impose on our
ability to separate concerns.

SOFTWARE ENGINEERING PRINCIPLES 14-71
14-25 July 1980 .~*.. - .

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

Concerns in real-time programs

By examining existing real-time programs one can distinguish seven classes
of concerns:

(1) Sensing, i.e., reading input lines and recording the observed values

in internal storagei

(2) Initiating sensing.

(3) Decoding, i.e., recognition of an event defined by a predicate on
internal variables.

(4) Calculating system values from the input values.

(5) Responding to events that have been decoded and recorded.

(6) Scheduling, i.e., allocating the processor among the processes that

are eligible to run.

(7) Coordinating access to shared resources.

Although conventional real-time programs deal with many of these concerns
in the same program text, the concerns are independent in the sense that they
can change independently. Observe that:

(a) The algorithm involved in sensor reading is largely independent of
the period of observation.

(b) Initiating sensing is critical because information may be lost if

sensor reading is delayed. The initiating policy depends more on
processor speed than on the interface to the input sensors.

(c) If the sensor values have been recorded in internal variables,
decoding them to recognize significant events may usually be delayed
without deleterious effect. Similarly using them to calculate system
values may also be delayed.

(d) Response to an external event is often complex and may extend over a
time period that is much longer than the sensor observation period.
Sensor observations often must continue throughout the period of
response.

(e) Processor scheduling can be performed knowing only the processor
demands of the various tasks and their deadlines. It is not
influenced by other properties of the tasks.

(f) Coordinating the usage of shared resources is primarily constrained
by the number and nature of the resources. For the most part, it can
be arranged without keeping track of momentary processor allocation.

14-72 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

. so

Separation of Concerns IDoc. HAS.6

However, the average allocation to each process cannot be ignored if
real-time deadlines are to be met.1,2.

The process model

We assume that we have available a number of parallel processes that
communicate by means of

(a) shared variables, and

(b) special synchronization variables that are accessed only by special
synchronization operations.

We also assume that synchronization operations can block and release
processes. A blocked process may not be scheduled to run; when it is released
it becomes eligible to run again.

The duration of a process may be long either because it is complex or
because it is not allocated the processor by the scheduler. Delays caused by
scheduling are hidden from the process, so it cannot affect them. Synchroniza-
tion operators explicitly block and release processes, constraining the actions
that the scheduler may take. Thus, processes are subject to scheduling, while
synchronization operations restrict scheduling by defining which processes are
eligible to run.

Proposed real-time software organization

I propose that the software be organized into three kinds of units:
processes, schedulers, and monitors.

(A) Processes are sequential subsets of the activities of the system.
We use the term "sequential" to indicate that the sequence of events within
a process can be determined by an examination of the task to be performed and
is not influenced by the number or speed of the available processors and
devices. The relative order of events within a single process is determined
by a conventional program that controls that process, but the relative order
of events in different processes is affected by processor speed and resource
speed as well as scheduling policies. In order to be able to ignore processor

1 There are two concerns of processor allocation: 1) momentary allocation:
which process has the processor at any given instant, and 2) average
allocation: how much of the processor time is allncated to each process
on the average over a period of time.

2 Whether one can ignore momentary allocation is a more complex point than
it may appear; we will return to it in the section titled "A fundamental
limitation of separation of concerns."

9SOFTWARE ENGINEERING PRINCIPLES 14-73j 14-25 July 1980

SEC. 14 /HOST-AT-SEA (UAS) SYSTEM

speed and scheduling policies while designing the other algorithms, processes
are regarded as proceeding in parallel at unknown relative speeds, but at real
speeds sufficient to satisfy the real-time cnstraints.

There would be four classes of processes:

(1) Cyclic process3es that observe external inputs and record their
values in internal variables (Sensing 3).

(2) Processes that examine recorded data to recognize events of
significance to the system (Decoding).

(3) Processes that process the recorded data to compute the
information required (Cailculating).

(4) Processes that are awakened whenever an event is noted and carry
out the system's response to the event (ftesponding).

(B) Schedulers allocate the processor to processes, using scheduling
policies to decide which process should run next. There would be two
schedulers.

(1) A simple scheduler that deals only with the periodic waking of
sensing processes (Initiating). It is assumed that the sensing
processes use small, fixed amounts of processor time in each
observation cycle. That time is effectively reserved for them
and is not available for other processes.

(2) A deadline scheduler that allocates the remaining processor
time, giving priority to processes with the most imminent
deadlines (Scheduling).

(C) A monitor is simply a module, or a collection of routines called by
other programs in order to obtain access to a shared resource (Coordinating).
There would be one for each type of resource. Each monitor hides both the
synchronization method used internally and the changeable aspects of the allo-
cation policy. The monitors will use synchronization primitives (Parnas 1978).

Separation of concerns achieved by proposed organization

The following examples illustrate the separation of concerns achieved by
the proposed organization:

(a) If a sensor is replaced by one with a different interface to the
computer, the program controlling the process that reads and
interprets that sensor is the only program that needs to be changed.

3 Names in parentheses key objects in the proposed organization to the seven
concerns in real-time programming.

14-74 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Ids.

____________________________Separation of Concerns / Doc. HLAS.6

(b) If accuracy requirements or other factors dictate a change in the
frequency of reading a sensor, the periodic awakener is changed.
This may make a change in the amount of time available for demand
scheduling, but in most cases there will be no ripple effect.

(c) Replacing a single processor with a faster or slower model (or with a
multiprocessot system) will affect the schedulers, but in fairly
straightforward ways. If the code was properly parameterized when
written, reprograimming will be minimal.

(d) Changes in the way of detecting or responding to a significant event
can usually be confined to the program controlling a single process.

(e) Changes in the availability or allocation policy for resources other
than the processor result in changes to individual monitors. The
process synchronization routines that are used by these monitors are
distinct and should not be affected. Unless required processor time
is changed drastically, scheduling is not affected. Processes using
the resources need not be affected by the changes.

A fundamental limitation of separation of concerns

Unfortunately, separation of concerns in the area of resource allocation
is not always possible. The resource allocation strategies may interact
strongly through their effects on processes that are using two or more
distinct resources. If a process that has been allocated some of resource B
is slowed by the monitor that allocates resource A, then the policy used in
allocating A may have noticeable effects on the allocation of B.

P. J. Courtois (1975; 1977) has carefully investigated this problem and
developed statistical criteria to help recognize situations where there would
be too much error caused by ignoring the allocation policy for one resource
when designing an allocator for another. Very roughly, if vs wish to neglect
the dynamics of resource A when concerned with resource B, the actions that
change the state of resource A must be of short duration and occur relatively
frequently when compared to actions that change-the state of resource B. When
this is valid, one is justified in considering A to be almost continually
available but somewhat slower than the actual A when allocating resource I.
For a particular process, we will consider A to perform at a rate equal to its
actual rate multiplied by the fraction of the time that it is available for
that process.

In designing systems of cooperating processes, vs want to be able to
neglect the momentary processor allocation, including the time used to
accomplish process switching, when allocating other resources. We will only
succeed if operations requesting or releasing the processor can be of
significantly shorter duration than operations requesting and releasing other
resources. If this is so, then we can view the processor as almost continually
available for each process, but considerably slower then the actual processor.

SOFTWJARE ENGINEERING PR"ICIPLES 14-75
14-25 July 1980

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

Process synchronization primitives

The fundamental limitation suggests that successful application of the
process concept will require that the software include several levels of
process synchronization primitives (Parnas 1978).

1. The lowest level must include only operations with extremely short
execution time. They serve primarily to inform the schedulers of changes in
the state of readiness of processes.

2. Using the lower level operations, one can implement monitors or other

operations that are convenient for resource allocation. The implementation
must keep processes that are waiting for a chance to execute the lower level
operations distinct from processes that are waiting for entrance to the
monitors and processes waiting for resources.

3. Decoding problems such as those discussed by Patil (1971) and Parnas
(1975b) are implemented using the lowest level primitives. The real-time
constraints on the duration of the lowest level primitives do not necessarily
apply to decoding operators such as those proposed by Patil.

Conclusions

The structure described above seems a plausible way to improve the
organization of real-time software. It should be further evaluated by means
of prototype software.

14-76 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Aift

HAS. 7 Implementing Processes in HAS

EXAMPLE DESCRIPTION

SEAWALLER SOFTWARE SYSTEMS SERVICE

our motto

STRUCTURED SOFTWARE SAVES

Introduction

Software Technologist Einar Newhire of the Naval Electronics Research Lab
(NERL) has proposed that the Host at Sea (HAS) software be implemented using
processes as a structuring concept. 0. U. De Zeeman of Computer System
Distributors (CSD) has written a rather sharply worded pape- indicating that
practical limitations prevent the implementation of processes for HAS. Under
terms of NERL contract NERL-CSS 42089a- 2 16 , this paper has been written to
resolve the conflict.

SSSS's position on the controversy is clear. The arguments on both sides
have definite merit. Newhire's approach leads to a better structured system,
but she failed to describe the system completely. The failure to deal with
certain issues creates the impression that they have been overlooked. In
fact, Newhire simply abstracted. Those issues can be dealt with separately
from the ones discussed.

This report is divided into two sections. Section 1, a modification of

a SIGOPS paper (HAS.6), discusses the motivation for the process concept in
HAS. Addressed specifically to HAS, it indicates what can be gained by using

processes as a structuring concept. Section II addresses the question of how
to implement processes. It includes a set of macros that can be used to
translate the processes described in Einar Newhire's proposal into code for
the HAS-BEEN computer. Because this contract did not call for study of HAS-
BEEN assembly language, we have used a simple, machine-independent notation to
describe our code. To avoid confusion, we have used the same notation that

CSD used to describe its proposed implementation of HAS.

SOFTWARE ENGINEERING PRINCIPLES 14-77

14-25 July 1980

Nor-

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

SECTION I

Professor E. W. Dijkstra has introduced two distinct topics into the
computer literature:

(1) Process synchronization: how to write programs that control several
computations proceeding in parallel at unknown relative speeds, given
that these computations share variables and other resources.

(2) Separation of concerns: how to organize a program so that programmers
need not think about too many things at one time.

The purpose of this section is to relate these two fields of study to HAS.

Concerns in HAS

By examining the CSD design for HAS, one can distinguish seven classes of
functions to be performed.

(1) Sensing, i.e., reading input lines anid recording the observed values
in internal variables.

(2) Initiating sensing.

(3) Decoding, i.e., recognition of an event defined by a predicate on
several internal variables.

(4) Calculating system values from input values.

(5) Responding to events that have been decoded.

(6) Scheduling i.e., allocating the processor among the processes that are
eligible to run.

(7) Coordinating access to shared resources.

Although the CSD desigr for HAS deals with many of- these concerns in the
same program text, the concerns are independent because they could change
independently. Observe that:

(a) The algorithm involved in sensor reading is largely independent of the
period of observation.

(b) Initiating observations is critical because information may be lost if
sensor readings are delayed. The initiating policy depends more on
processor speed than on the interface to the input sensors.

14-78 SOFTWARE EN4GINEERING PRINCIPLES
14-25 July 1980

Implementing Processes in HAS / Doc. HAS.7

(c) If the sensor values have been recorded in internal variables,
decoding them to recognize significant events may usually be delayed
somewhat without deleterious effect. Similarly, using input values to
calculate system values may usually be delayed.

(d) Response to an external event is often complex and may extend over a
time period that is much longer than the sensor observation period.
Sensor observations often must continue throughout the period of
response.

(e) Processor scheduling can be performed knowing only the processor
demands of the various tasks and their deadlines. It is not
influenced by other properties of these tasks.

Mf Coordinating the usage of shared resources is primarily constrained by
the number and nature of those resources and may often be arranged
without taking the momentary processor allocation into considera-
tion. The average processor allocation cannot be ignored because HAS
has real-time constraints.1' 2

The process model

Einar Newhire's design assumes that we have available a number of
processes that communicate by means of:

(a) shared variables, and

(b) special synchronization variables that are accessed only by special
synchronization operations.

We also assume that synchronization operations can block and release
processes. A blocked process is not eligible to run until it is released.

The duration of a process may be long either because it is complex or
because it is not allocated the processor by the scheduler. Delays caused by
scheduling are hidden from it, so that it cannot affect them. Synchronization
operators explicitly block and release processes, restricting scheduling by
defining which processes are eligible to run.

1 There are two separate concerns of processor allocation that are being
distinguished here: 1) momentary allocation: which process has the
processor at any given instant, and 2) average allocation: how much of
the processor time is allocated to each process on the average over a
period of time.

2 Whether one can ignore momentary allocation is a more complex point than
it may appear and we will return to it in the section called "A fundamental
limitation of separation of concerns."

SOFTWARE ENGINEERING PRINCIPLES 14-79
14-25 July 1980

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

Proposed real-time software organization

The HAS software should be organized into two kinds of units to be known
as processes and modules. The modules include monitors and schedulers, as
described in Newhire's module design (HAS.3).

Processes are sequential-subsets of the activities of the system. We use
the term "sequential" to indicate that the sequence of events within a process
can be determined by an examination of the task to be performed and is not
intluenced by either the number or the speed of the processors and devices.
The relative order of cvents within a single process is determined by a conven-
tional program that controls that process, but the relative order of events in
different processes is affected by processor speed and scheduling policies.
To achieve separation of concerns, processes are regarded as proceeding in
parallel at unknown relative speeds, but at real speeds sufficient to satisfy
the HAS timing constraints.

There are four classes of processes:

(1) Cyclic process, run periodically, that observe external inputs and
record their values in internal variables (Sensing)3 .

(2) Processes that examine recorded data to recognize events of
significance to the system (Decoding).

(3) Processes that process recorded data to compute the information
desired (Calculating).

(4) Processes that are awakened whenever a significant event is noted and

carry out the system's response to the event (Responding).

There are two schedulers:

(I) A simple scheduler that deals only with the periodic starting of sen-
sing processes (Initiating). It is assumed that the sensing processes
use small, fixed amounts of processor time in each observation cycle.
That time is reserved for them and unavailable to other processes.

(2) A deadline scheduler that allocates the remaining processor time

among the other processes (Scheduling).

A monitor module is a collection if routines that are called by the other

programs when they need to obtain access to a shared resource (Coordinating).
There would be one monitor for each type of resource. Each monitor hides both
the synchronization method that is used internally and the changeable aspects
of the allocation policy. The monitors use synchronization primitives
(Dijkstra 1968; Parnas 1976) to implement-coordination.

Names in parentheses key these objects to the seven HAS concerns mentioned
earlier.

14-80 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

7- Z

Implementing Processes in HAS / Doc. HAS.7

The following examples illustrate the separation of concerns achieved by
the proposed organization:

(1) If a sensor is replaced by one with a different interface to the
computer, the program controlling the sensing process for that sensor
is the only program that needs to be changed.

(2) If accuracy r equirements or other faccors dictate a change in the
frequency of reading a sensor, the simple scheduler that initiates
periodic processes is changed. This may make a change in the amount
of time available for demand scheduling, but in HAS there will be no
ripple effect because the HAS BEEN has plenty of extra CPU cycles
according to our analysis.

(3) Replacing a single processor with a faster or slower model or with a
multiprocessor system will affect the schedulers in fairly straight-
forwar(I ways. Reprogramming will be minimal. The code describing
the processes themselves need not change at all.

(4) A change in the algorithm used to detect or to respond to a signifi-
cant event can be confined to the program controlling a single
process.

(5) Changes in the availability or allocat'on policy for non-processor
resources result in changes to individual monitors. The process
synchronization routines that are used by these monitors will not be
affected. Unless processor time required is chenged drastically,
scheduling is not affected. Processes need not be affected by such
changes.

A fundamental limitation on separation of concerns

Unfortunately, separation of concerns in the area of resource allocation
is not always possible. The resource allocation strategies may interact
strongly through their effects on processes that are using two or more
distinct resources. If a process that has been allocated some of resource B
is slowed by the monitor that allocates resource A, then the policy used in
allocating A may have noticeable effects on the allocation of B.

P. J. Courtois (1975; 1977) has carefully investigated this problem and
developed statistical criteria to help recognize situations where there would
be excessive error caused by ignoring the allocation policy for one resource
when designing an allocator for another. Very roughly, if we wish to neglect
the dynamics of resource A when concerned with resource B, the actions that
change the state of resource A must be of short duration and occur relatively
frequently when compared to actions that change the state of resource B. When
this is valid, one is justified in considering A to be almost continually
available but somewhat slower than the actual A when allocating B. For a
particular process, we will consider A to be performing at a rate equal to its
actual rate multiplied by the fraction of the time that it is available for
that process.

SOFTWARE ENGINEERING PRINCIPLES 14-81
14-25 July 1980

-. ----- ---- --- ---- ---- --.- -.

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

In HAS, we want to be able to neglect the momentary processor allocation
when allocating other resources. We will only succeed if operations request-
ing or releasing the processor (synchronization operations) can be of signifi-
cantly shorter duration than operations requesting and releasing other
resources.

These conditions can be satisfied by the HAS design proposed by Einar
Newhire.

I

14-82 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Implementin Processes in HAS / Doc. HAS.7

SECTION II

In Section I of this paper, we showed that the motivation for using
Newhire's approach is to achieve separation of the seven types of concerns

encountered in HAS. The processes given in Newhire's proposal take care of
four of them: sensing, decoding, calculating, and responding. To make a

complete system, it is necessary to write the code for periodic scheduling,
processor allocation, and resource coordination. We propose to do this in

four stages. In the first stage we will take care of resource coordination by
introducing monitors for the shared resources. In the second stage we will

take care of the periodic scheduling or "initiating" by introducing a special
process analogous to a hotel desk clerk to function as an alarm clock. It

waits until a certain time is reached, and then awakens another process. In
the third stage, we will implement the synchronization routines that change
the set of processes eligible to run. In the final stage, we will implement
the scheduler that allocates the real processor(s) among the processes

eligible to run, so that all make smooth progress.

We ask Mr. De Zeeman and other readers to be patient with this slow,

multistage approach. Our purpose, like Newhire's, is to deal with one problem
at a time so that the human brain can handle the degree of complexity required
at any given time.

SOFTWARE ENGINEERING PRINCIPLES 14-83

14-25 July 1980

WP - f

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

(Stage 1: Coordination of Shared Resources.

In HAS resources are shared in two ways: explicitly and implicitly. The
explicitly shared resources are primarily data structures, tables, and I/0
devices. The implicitly shared resources are the "private" memory areas of
the processes. Although we chose to ignore this problem while writing the
basic process controller programs, there comes a time when we must recognize
that the memory areas of all processes are shared with the memory check
process(es), so that no area is really private to a process.

When do we need a monitor?

We need a monitor for any resource such that (a) it is used by more than
one process and (b) simultaneous or overlapping attempts to use the resource
would result in errors. We need a monitor for any such resource whether it be
a single boolean variable, an I/0 device, or a mass storage device. For each
type of resource there is a usage discipline or protocol that will guarantee
that the user processes do not interfere with each other. The monitor is a
set of supervisory routines guaranteeing that the discipline is followed.

An example of a shared resource is a buffer that is used to communicate
between two processes. Another example is a shared variable, such as embc in
HAS.4, that is set by one process and checked by another. All of the data
structures usec to store the temperatures, wind speeds, and other data are
also considered to be shared variables in this context.

It is essential to observe that we are talking about variables that are
shared among processes, not about variables that are shared among modules.
The recorded data are stored in variables that are private to a record storage
module, but the module is used by several processes. Those processes may all
call the module's access functions, and we must guard against the danger of
simultaneous or overlapping access by two or more processes.

What is a monitor?

Some authors (e.g., Brinch Hansen, Hoare) give the term monitor a very
narrow meaning as a specific construct in a programming language. At Seawaller
Software Systems Service, we use "monitor" in its original and more general
sense. Mionitor re'fers simply to the collection of procedures that access the
resource directly and hence are able to monitor the accesses. We are not

*going to propose a specific language construct for monitors for two reasons:

(1) HAS will be implemented using an existing language.

(2) Different types of resources require different types of monitors.

SSSS considers designing the monitors to be a system design problem, not a
language design problem. Fov example, for a data structure that consists of a
single word in core, the hardware provides the necessary "monitor" by prohibit-

* ing simultaneous reads and writes.

14-84 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Implementing Processes in HAS / Doc. HAS.7

The monitor procedures will use the access procedures of the modules that

hide the implementation details of the resource. These access procedures,

such as GET and SET functions, hide the data structures and access algorithms.
They would suffice if simultaneous calls were not a danger. For more general
situations, these procedures will be used by additional programs that syn-
chronize use of the resource by multiple processes. The external interface to
the monitor may look like the basic access functions, but it need not. The
design criteria and the monitors needed in HAS are discussed below.

Monitors for HAS

The HAS structure proposed by Newhire contains four types of computer

resources that are shared among processes: single variables, buffers, the
data structures hidden by the record storage module, and the "private"
variables of each process. In addition, there are system resources, such as
transmitters and receivers.

Buffer Monitors

For buffers, Habermann's ACCEPT and DEPOSIT procedures (1972) can be used

as monitors. They use Dijkstra's P and V operators to guard against incorrect
simultaneous access by multiple processes. Note that, unlike the monitors
built into CONCURRENT PASCAL (Brinch Hansen, 1975), they do not always exclude
each other's executions. Mutual exclusion is not necessary for this type of
buffer; unless the routines try to operate on the same frame in the buffer, an
ACCEPT and a DEPOSIT may occur simultaneously without ill effect.

In the algorithms below, the semaphores "out.xbuf" and "in.xbuf" prevent
more than one process from simultaneously accepting from or depositing into a
buffer, respectively. The semaphore "space.xbuf" synchronizes the processes,
preventing buffer overflow and "data.xbuf" prevents buffer underflow; these
two semaphores prevent a simultaneous ACCEPT and DEPOSIT on the same frame.
"space.xbuf" must be initialized to the number of initially available frames
in the buffer, "data.xbuf" is initialized to zero, and the other semaphores
are initialized to 1.

"front.xbuf" is an index to a buffer location; it always points to the

first empty buffer slot if no DEPOSIT is in execution. Similarly, "rear.xbuf"
points to the frame preceding the first full frame unless an ACCEPT is in
progress. "successor" returns a pointer to the next buffer frame succeeding
the one pointed to by the parameter.

SOFTWARE ENGINEERING PRINCIPLES 14-85
14-25 July 1980

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

procedure deposit(x, xbuf);

begin obal pointer front.xbuf; parameter x; comment x is the data to be

stored

global buffer xbuf;

semaphore in.xbuf, space.xbuf, data.xbuf;

P(in.xbuf); comment only one process can deposit at a time;

P(space.xbuf); commnent wait if the buffer is full;

xbuf(front.xbuf):- x;

front.xbuf: = successor(front.xbuf);

V(data.xbuf); comment signal that the buffer is not empty;

V(in.xbuf);

end;

procedure accept(x, xbuf);

begin global pointer rear.xbuf; parameter x; comment x is the data to be

retrieved

global buffer xbuf;

semaphore out.xbuf, space.xbuf, data.xbuf;

P(out.xbuf); conment only one process can accept at a time;

P(data.xbuf); connent wait if the buffer is empty;

rear.xbuf: = successor(rear.xbuf);

x:- xbuf(rear.xbuf);

V(space.xbuf); comment signal that the buffer is not full;

V(out.xbuf);

end;

Data Structure Monitors

The record storage functions represent a shared data structure that is a

classic instance of the "reader-writer" problem (Courtois, 1971). For each
such "holder" there is a process that periodically updates the information,
and there are several other processes (the report generator processes) that
use the information to prepare messages. The latter are "reader" processes
and do not interfere4 with each other. Since the updating processes write

4 They may slow each other down but they cannot affect the results.

14-86 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

- -_ _ _ _V

Implementing Processes in HAS / Doc. HAS.7

4(in the data structures, the information in the holder will be inconsistent
while one of these processes is in the middle of an update. To design the
monitor for each type of record, it is first necessary to decide exactly what
is meant by consistent data. If the data items being stored are not to be
compared to each other, then the data may be considered consistent after each
individual item has been completely updated. On the other hand, if the data
are to be compared (e.g., to compute temperature gradients), then it is
important that all items taken from the storage represent the same point in
time. In that case the data will not be considered consistent between the
time that the updating process starts to insert new values and the time that
it finishes.

In the first case, where individual data items may be updated and the
report is considered consistent, the update access functions provided by the
monitor will look like the individual SET functions provided by the basic
module. In the second case, since a number of items must be considered
consistent, the monitor must provide a single access function for updating all
of them.

Example of the Second Case:

If the record storage module provides functions SETTEMI, SETTEM2, and
SETTEM3 to store temperature values, and all three temperatures should
represent the same moment because differences will be computed, the access
monitor will use the three SETTEM functions to implement SETTEM(Pl,P2,P3).

SETTEM and the other monitor access functions will contain the
necessary synchronization operators to guarantee that after one of the
TEMP items has been updated, no data will be used until all three have
been updated. At all other times, access to TEMPI, TEMP2, TEMP3 need not
be restricted.

Assuming the availability of the three functions above and FETTEM ,
FETTEM2, and FETTE 3 to fetch values in a similar way, the monitor
procedures would look as follows:

INITIALIZATION

begin global integer readcount:=0;

global semaphore temcs, temw;

temcs:1I; temw:=l;

end;

SOFTWARE ENGINEERING PRINCIPLES 14-87
14-25 July 1980

--- €

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

procedure SETTEM(pl, p2, p3);

beinsemaphore temw; parameter pl, p2, p3 ;

P(temw); coment wait if any other process

operating on data, else

lock out other processes;

setteml(pl);

settem2(p2);

settem3(p3);

V(tew);

end;

procedure FETTEM(pl, p2, p3);

begin integer readcount; parameter pl,p2, p3 ;

semaphore tenm, temcs;

P(temcs); comment mutually exclusive access

to readcount;

readcount:=readcount+l;

if readcount - 1 then P(temv); end-if; comment if first reader, lock out

writers, wait if writer

already in progress;

V(temcs);

pl:=fetteml;

p2*i=fettem2;

p3:=fettem3;

P(temcs);

readcount:=readcount-1;

if readcount=O then V(tem); end-if; comment allow waiting writer to

proceed if no other

reader;

V(temcs);

end;

14-88 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Implementing Processes in HAS /Doc. HAS.7

Monitor for private memory areas

One of the requirements for the HAS program is that all areas of memory
are periodically tested by a memory check process. This includes the areas
storing code and data that are private to the other processes. Since memory
checking destroys the contents of the memory, the contents must be copied to
an area that is private to the memory check process before the test begins.
They will be returned after the check is complete. During the test it is not
possible to execute the relocated code or access the relocated data. 5 Thus,
a process may not run while its memory is being checked.

Each of the processes in Newhire's proposal has a clearly defined homing
state, that is, a state in which it remains most of the time and in which it
may be safely suspended. To build the monitors for the private code and data
of each process, we will introduce one additional semaphore per process. The
process does a V on this semaphore before entering the homing state and a P
upon starting up again. The memory check process does the P before beginning
to relocate the data and a V when the data is returned. Thus, execution of
the process and its memory check cannot occur at the same time.

Because shared data areas are already protected by semaphores, the memory
check process can use them like any other user.

Shared code areas used by reentrant processes are not already protected
because the processes that execute them are "readers": they do not alter the
code. In such cases, the shared code must be equipped with reader-writer
entry points. The memory check process is the writer.

This design for memory checking is based upon the following two assump-
tions that hold for HAS at present. The assumptions must be noted because
the design must be changed if the assumptions no longer hold.

(1) The HAS BEEN computer is not equipped with hardware that supports
run-time relocatable code or data (such as the PDP-11/40 segmentation
hardware). If we had such hardware it would be a simple matter to relocate
the data and code and perforr the memory check without conce.n for the
progress of the process.

(2) The time frame in which sensor readings must be made is relatively

long compared to the time required to check the memory belonging to a
process. Therefore, not scheduling the process during that time is an
acceptable solution. If the time frames involved were shorter, it would be
necessary to segment the code and data, thereby reducing the time for any one
memory check, or to duplicate the code and data so that progress could be made
during the memory check.

SOFTWARE ENGINEERING PRINCIPLES 14-89

14-25 July 1980

.. ..4 - i
t' 'r ' '

" - - -'. .. | l l ; ' . . ." ' ' :" "

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

There are two areas of memory that are not covered by the above
discussions. These are the areas of memory in which the memory-chock process

:1 resides and the areas of memory devoted to the semaphores. If the memory-

check process is to check its own memory, it must have a copy of itself (or arsubset) elsewhere. This copy checks the memory-check process as if it were

any other process.
The semaphores are a problem because they are not private to any other

process and can not be protected by semaphores. Luckily, they represent a
very small part of memory, so that all other processes can be suspended while
they are being checked.

14-90 SOFTWARE ENGINEERING PRINCIPLES

14-25 July 1980

.7 -~ - -

Implementing Processes in HAS / Doc. HAS.?

Stage 2: The "desk clerk" procedure

Even after all of the processes in Newhire 'a proposal have been refined
to include the synchronization implicit in the resource monitors, there is
nothing in the code that refers to real time. All of the processes are now
synchronized; they will not interfere with each other. This can be proved
without making any a sumptions about their real speeds or relative speeds.
This is a very important property. Designing a system of processes so that
their correct cooperation depended on each process proceeding strictly
according to a rigid schedule would be like planning a subway system without
safety interlocks, on the assumption that the trains would always be on time.

Unlike some multiprogramming systems, the HAS system has real-time
deadlines for some of its work that are really "hard" deadlines. By hard
deadlines, we mean that the old adage, "better late than never", does not
hold. Data that is not read in time is lost forever. Out-of-date data may
lead to drastic errors. We must take real time into account somewhere.

Even though many processes may wait for particular points in time, we
propose that all observation of the actual time be confined to a single
procedure. Each process that needs to wait executes a P operation on a sema-
phore. The single procedure that observes real time will do the necessary V
operation at the proper time. When that happens, the waiting process is
marked ready and begins to compete for the processors, making progress in
accordance with the scheduling policies. We stated earlier that blocks of
time are reserved for these periodic, time-driven processes. This is
implemented by assigning them higher priorities than the demand processes.

This approach has certain advantages:

(1) The concern, "What do I do when my time comes?" is separated from "Is
it my time to run yet?"

(2) The concern "'w1hich of the ready processes should be run now?" is
separated from "Which processes should be ready at this point in
tima?" (Both of these have been called scheduling and considered one
problem in the past.)

(3) Waiting for a given amount of time to pass is only done by one
procedure. Cirtain inaccuracies that can occur because two processes
are waiting until the same point in~ time are more easily avoided.

SOFTWARE ENGINEERING PRINCIPLES 14-91
14-25 July 1980

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

(4) Changes in the real-time schedule are confined to the desk-clerk
program sketched below. When this program runs is discussed later.

if time interval elapsed then

V(semaphores on list for this interval);

determine next interval;

end;

end-if;

14-92 SOFTWARE ENGINEERING PRINCIPLES

14-25 July 1980

r -... ..

Implementing Processes in HAS / Doc. HAS.7

Stage 3: Implementing the P and V routines

Our code now contains many calls of the synchronization routines invented
by E. W. Dijkstra (1968a, 1968b). P is used by a process to try to pass a
semaphore and to mark its passage. V is used to allow a semaphore to be
passed. The specifications for P and V could be written as shown below:

P AND V WITH TRACES

The specification for P and V recognizes the fact that, when dealing
with parallel processes, the events that are described by a trace are not
simply calls of routines. We must introduce Pb, which is the event of
the start of a P, and Pe, the end of a P. Only by treating these as
distinct events can we describe the waiting that occurs during a P. In
this specification, illegal traces never occur. A call on P (the event

Pb) is always allowed. The P-V module delays the Pe until it is legal.
Thus, for this specification, the legal traces might be more accurately
called possible traces. These assertions refer only to traces on the
events for one semaphore.

SYNTAX:

(1) P: semaphore --) semaphore gt: greater than
(2) V: semaphore --) semaphore le: less than or

equal to
L: Legal

SEMANTICS: M: equivalence

Legality:

i = number of P operations that can be completed before any V operation is
done (usually one)

(1) (n gt 0) =) L(Vn.Pb.Pe)

(2) (n gt 0)) L((Pb.Pe)i.p.V.Pe)

(3) (n le i) =) L((Pb.Pe)n.v)

Equivalences:

(1) L(T.Pb.Pe.V) =) T = T.Pb.Pe.V

(2) L(T.Pb.V.Pe) =) T = T.Pb.V.Pe

(3) L(T.V.Pb.Pe) =) T = T.V.Pb.Pe

This does not bind us to any particular implementation.

SOFTWARE ENGINEERING PRINCIPLES 14-93

14-25 July 1980

7 A. N i

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

Dijkstra has published two slightly different implementations of the P and V
operations (9 68 a, 1968b). Both satisfy the above requirements, but we believe
that the implementation proposed in this section is appropriate for HAS.

We implement each semaphore using an integer variable and a set variable.

The set variable can contain zero, one, or more processes. There are operators
to insert a process in the sat, to remove a process from the set, and to ask
if a specific process is in the set. The integer variable is usually initial-
ized to I and the set variable to empty. However, it would be permissible to
initialize the integer variable to any non-negative value if the set variable
is empty, and to negative values if the number of processes in the set variable
is equal to the magnitude of the integer variable.

A P-operation is then implemented by decrementing the integer variable

and testing it. If the integer variable is negative when tested, the process
enters itself in the semaphore's set variable and releases the processor to
ready processes. The process is now blocked. This action corresponds to

Pb- If the integer variable is non-negative, the process may continue.
This action corresponds to Pe-

The V-operation increments the integer variable. If the result is negative
or zero, one of the processes is removed from the semaphore's set variable,
and entered in one of the sets of !eady processes. This process is now "ready"
to run. Removing a process from tlhe semaphore set corresponds to Pe"

In this implementation, if the integer variable is negative, its magnitude
always represents the number of processes in the set variable. In this case,
the integer value is redundant since we could get the same information by
counting the entries in the set variable. When the integer value is positive,
it is not redundant.

The operation P followed by a V or the operation V followed by a P will
leave the number of the processes in the set unchanged. The fact that the
order of these events does aot matter, except with regard to the identity of
the processes in the set, makes it easier to prove that certain properties of
the system will hold even if the speeds of processes change.

There are still two portions of the P and V operat'on to be refined.
If the processor is released in the P operation, a "ready" process must be
selected to run. If a process is removed from the semaphore's set in the V
operation, ont of the members of the set must b, qelected to be made ready.

In neither case have we yet spec,_ied which)ne, If you look back at the
specifications for P and V, you will find no help on th.s question. The

choice of a process from the set members is not constrained by the require-
ments. This has the advnntage that any program proven correct using only the

specifications of P and V, will work correctly with any policy for selecting
set members. For HAS, we suggest two simple policies. We will always remove

the longest waiting process from a semaphore set variable. When a process is
marked ready, we assign it a priority. We will always select the highest
priority process when allocating the processor.

14-94 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Implementing Processes in HAS / Doc. HAS.7

The sets may be represented as First-in-First-out (FIFO) queues of process
descriptors. Each process descriptor will contain the process number,
priority, and state information such as register contents and program counter.

Implementations for standard queue manipulation procedures are found in

most programming texts; we will not include them here. We will assume we have
two procedures, INSERTP (process, queue) to insert a process in the queue, and
REMOVEP (process, queue) to remove the longest waiting process from the queue,
placing its descriptor in the parameter "process."

The final code for P and V now looks like:

procedure P(s);

begin global integer int.s; global process-descriptor queue set.s;

int.s:=int.s-i;

if int.s It 0 then

egi

comment current_process is a function returning the process descriptor

of the process running on this processor;

insertp(current_process, set.s);

processorallocate;

end;

end-if;

end;

procedure V(s);

~global integer int.s; global process-descriptor queue set.s;

private process descriptor process;

int.s:=int.s+l;

if int.s le 0 then

removep(process, set.s);

make-ready(process);

end;

end-if;

end;

The "processorallocate" and "makeready" routines are described later.

SOFTWARE ENGINEERING PRINCIPLES 14-95

14-25 July 1980

~iA ~MONA-

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

Stage 4: Completing Process ImplemenLation

Adding Preemptive Scheduling

The code that we have now is complete and could be directly translated

into running code if we could live with non-preemptive processor scheduling.
It has a lot of processes that voluntarily release the proc ssor when they try
to execute a P operation and cannot finish it. Because of the mutually
cooperative nature of the process structure and the fair scheduling strategy
that we have taken, things would go well if we had no real-time deadlines and
we really did not care about the relative speeds of the processes. The
behavior of the system would be a bit "jerky". One process would run until
its input or output buffer emptied or filled, another would then run until a
similar event occurred to it, etc.

For HAS, this behavior is not acceptable. We must now add provisions to

have the processor preempted between synchronization events. Unfortunately,
one of the properties of the HAS-BEEN computer is that it has no interrupt
system. Although we may wish to preempt processors, we must really implement
things so that the processes release them voluntarily. To ensure smoothness,

we will insert instructions every so often to check the priorities of waiting
processes and release the processor whenever a waiting profess has hipher
priority than the one currently running. This will be done automatically by
postprocessing the code generated by the above expansion and inserting a macro
call to the scheduler after every few statements. We are fortunate that the
HAS-BEEN computer does have adequate speed for our application even if we
insert many instructions in this way.

It is interesting to notc that the T.H.E. system (Dijkstra 1968) at one

time had a preemptive clock implemented in a similar manner. However, this
code was removed permanently after an experiment revealed that the behavior
was satisfactory without it. T.H.E. had no real-time demands, but we have
the option of trying the same experiment.

The "desk clerk" is given control whenever the processor is reallocated,
since checking the real-time clock is the top priority activity.

We will adopt a round-robin policy for processes of equal priority. This
strategy is implemented using one queue of ready processes for each priority.
When a process gives up running, it inserts itself at the back of the queue
with its priority. Then it calls the processor allocate routine to select and

start the next process. The next process is removed from its ready queue
before it is run. Code for this rouLine is shown below:

procedure roundrobin;

makeready(currenL_p-ocess);
desk_clerk;
processor-allocate;

end;

14-96 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Implementing Processes in HAS / Doc. HAS.7

Process switching routines

The procedure "makeready" inserts a process into a FIFO queue of ready

processes. Code is shown below:

procedure makeready (p);

begin process-descriptor paraweter p; private integer pri;

global process-descriptor queue array ready-list;

comment p = process number to insert in ready queue, readylist

is an array of queues, one for each process priority level;

pri:= priority(p);

insertp (p, ready_llst(pri));

end;

The operation of releasing a processor and reassigning it is machine

dependent and so will only be sketched here. It involves storing copies of
the processor registers in the old process's data area and loading new values
into the registers from the new process's data area. The abstract program is
shown below:

procedure processorallocate;

begin global process-descriptor queue array readylist;

private process-descriptor proc;

private integer i;

private constant integer maximum_priority;

"save registers and PC;"

comment find highest-priority, non-empty ready set. If all the

other ready sets are empty, there is always a process in the
0 priority set that consumes time and calls

processorallocate again;

i:= maximumjpriority;

while ready-list(i) is empty do

begin i:= i-1; end;

end-while;

removep(proc, ready list(i)); comment places process descriptor in

proc#;

load registers and PC from descriptor for process proc;

end;

SOFTWARE ENGINEERING PRINCIPLES 14-97

14-25 July 1980

SEC. 14 / HOST-AT-SEA (HAS) SYSTEM

Conclusions

0. U. De Zeeman called Einar Newhire's design unrealistic academic
* poppycock. He would have been more accurate if he had simply called it

incomplete. In this report we have shown how Newhire's design can be refined
in a step-by-step way, adding code to implement the missing portions. This
code could be added in the form of subroutine calls but we do not recommend
that. We propose that the code given here be implemented as macros and
inserted in-line so that the many calls will not incur excessive overhead.
The resulting code will be a bit hard to read, but no one need read it. The
macro expansion process should be automated so that changes can be made to the
separate sections rather than to the expanded code. This will save immense
labor during the program maintenance part of the HAS system's life cycle.

14-98 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

.Zw'-'?--- -L-] '77 .-- - £ ; - , - . - .. .

EVAL. 1 Comment Sheets

Name (optional):

Instructions

Please use the following sheets to record your observations as we progress

through the course. Identify lecture, example, or exercise uaterial under
discussion by using the relevant document identifier. Highlight what you
liked as well as the problems you found. Lengthy comments may be extended
into the following entry and should be so indicated by crossing out the
intervening typing. Examine the example below.

Turn in all comments at the end of the course.

Example

Relevant document: PF.Z-

SOFTWARE ENGINEERING PRINCIPLES 15-1
14-25 July 1980

SEC. 15/ EVALUATIONS

Relevant document:______

Relevant document:______

Relevant document:______

15-2 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Rp$

Comment Sheets / EVAL.l

Relevant document:

Relevant document:

Relevant document:

SOFTWARE ENGINEERING PRINCIPLES 15-3
14-25 July 1980

' #-

SEC. 15 /EVALUATIONS

Relevant document:______

Relevant document:______

Relevant document:______

15-4 SOFTWAE ENGINEERING PRINCIPLES
14-25 July 1980

Comment Sheets / EVAL.I

Relevant document:

Relevant document:

Relevant document:

SOFTWARE ENGINEERING PRINCIPLES 15-5
14-25 July 1980

SEC. 15 EVRALUATIONS

Relevant document:______

Relevant document:______

Relevant document:______

15-6 SOFTWARE ENIGINEERING PRINCIPLES
14-25 July 1980

Com ent Sheets / EVAL.1

Relevant document:

I

Relevant document:

Relevant document:

SOFTWARE ENGINEERING PRINCIPLES 15-7

14-25 July 1980

SEC. 15 / EVALUATIONS

4 ~Relevant document:______

Relevant document:______

Relevant document:______

15-8 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Comment Sheets / EVALI

Relevant document:

Relevant document:

Relevant document:

SOFTWARE ENGINEERING PRINCIPLES 15-9

14-25 July 1980

4

SEC. 15 / EVALUATIONS

Relevant document:______

Relevant document:______

Relevant document:______

15-10 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

EVAL.2 Course Evaluation

Name (optional)

Instructions

1. There are eight questions or requests for information. Please respond to
all eight.

2. For questions followed by a rating scale, mark the scale with a bar,

to indicate your answer to the question. Scale calibrations appear below
the rating bars. You may rewrite scale calibrations you dislike or do not

understand.

If you are a bit unuertain about your rating, mark a lower bound with a

left parenthesis, (, and an upper bound with a right parenthesis,) •

We encourage you to elaborate on your rating in the space provided below

the scale.

Your rating might look something Ioke

3. Please attach any comment sheets (EVAL.1) you completed during the course.

SOFTWARE ENGINEERING PRINCIPLES 15-11

14-25 Tuly 1980

SEC. 15 / EVALUATIONS

Questions

1. What percentage of the time that you devote to software do you spend on
the following software activities? Try to have the sum approximate 100%.

Project or Acquisition Management : : : : :
(including contracting, financial 0% 25% 50% 75% 100%

management, data item management)

Software Construction (including : : :

analysis, design, code, debug, 0% 25% 50% 75% 100%
maintenance, and documentation)

Software Testing or System Evaluation : : :
0% 25% 50% 75% 100%

Configuration Management or : : : : :

Quality Assurance 0% 25% 50% 75Z 100%

Software Engineering Research : : : : :

or its Funding 0% 25% 50% 75% 100%

Teaching : : : : :
0% 25% 50% 75% i00%

Other (: : : : :
0% 25% 50% 75% 100%

2. How well were the course goals met? (See section VIII of GEN.1.)

.............................. : :e..............

not at all one-fourth halfway three-fourths totally

15-12 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Course Evaluation / Doc. EVAL.2

3. What is your overall understanding of the course material?

..... •.... : : ,, :.,...... Z

lost vague basics good total

4.a. How useful will the course be to your work?

:--.. :............... ,........

fatal harmful neutral helpful vital

b. If you feel it will be useful, how often will it be so?

: : o : : :

once yearly monthly weekly daily

5. How was the overall performance of the instructors?

:..............:........... ... :........................... .

terrible poor fair good excellent

6. How do you rate the course overall?

: : : :
terrible poor fair good excellent

SOFTWARE ENGINEERING PRINCIPLES 15-13
14-25 July 1980

SEC. 15 / EVALUATIONS

7. For each course topic, rate how useful the material will be to your work
and rate the quality of presentation. If a bad presentation ruined
otherwise useful material, please note this.

Utility Presentation

PROGRAM FAMILIES
:... .•.. .. ,....... ••.... :............. o..:

fatal harmful none helpful vital terrible poor fair good excellent

UNDESIRED EVENTS

fatal harmful none helpful vital terrible poor fair good excellent

INFORMATION-HIDING MODULES
:.-.................................. :........

fatal harmful none helpful vital terrible poor fair good excellent

SPECIFICATIONS

fatal harmful none helpful vital terrible poor fair good excellent

ABSTRACT INTERFACE MODULES

fatal harmful none helpful vital terrible poor fair good excellent

HIERARCHICAL STRUCTURES
:....... o: : : : : :, " : : :

fatal harmful none helpful vital terrible poor fair good excellent

LANGUAGE CONSIDERATIONS
....................... : : : :. :

fatal harmful none helpful vital terrible poor fair good excellent

15-14 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

. -..

tI

Course Evaluation /Doc. EVAL.2

(Question 7 continued)

Utility Presentation

PROCESS STRUCTURE

"............... : " "....... *.......

fatal harmful none *helpful vital terrible poor fair good excellent

PROOFS OF CORRECTNESS
... ,... ;......

fatal harmful none helpful vital terrible poor fair good excellent

DOCUMENTATION

fatal harmful none helpful vital terrible poor fair good excellent

8. A list of questions on miscellaneous topics follows. Please add topics of
your own.

a. What were the good and bad aspects of the programming assignment
(MADDS)?

b. What were the good and bad aspects of the MP and HAS examples?

SOFTWARE ENGINEERING PRINCIPLES 15-15

14-25 July 1980

AMai

SEC. 15 / EVALUATIONS

c. What problems, if any, are ther'e with the pseudo code (GEN.5)?

d. What definitions should be improved or should be added to the glossary
(GEN.6)?

e. What new topics should be added to the course; which current topics
should be dropped?

f. How will you use some of the course ideas in your future work?

g.

15-16 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Course Evaiuation /Doc. EVAL.2

SOFTWARE ENGINEERING PRINCIPLES 15-17
14-25 July 1980

9~4qrpmw~'w wfl,'-~ - -.

I

V
tt

U
U
r
0
0
2

S
4

III

BIB. 1 Bibliography

ACM SIGPLAN. 1979. "Preliminary Ada Reference Manual." SIGPLAN Notices,

vol. 14, no. 6, part A.

ACM SIGPIAN. 1979. "Rationale for the Design of the Ada Programing

Language." SIGPLAN Notices, vol. 14, no. 6, part B.

Anderson, R. B. 1979. Proving Programs Correct. New York: John Wiley & Sons.

Baker, F. T. 1972. "Chief Programmer Team Management of Production

Programming." IBM Systems Journal, vol. 11, no. 1, pp. 56-73.

Bartussek, W.; and Parnas, D. L. 1977. "Using Traces to Write Abstract
Specifications for Software Modules." University of North Carolina

Report no. TR 77-012.

Boehm, B. W. 1973. "Software and its Impact: A Quantitative Assessment."

Datamation, vol. 19, no. 5, pp. 48-59.

Brinch Hansen, P. 1970. "The Nucleus of a Multiprogramming System." Comm.
ACM, vol. 13, no. 4, pp. 238-241, 250.

---------- 1973. Operating Systems Principles. Euglewood Cliffs:

Prentice-Hall.

---------- 1975. "The Programming Language CONCURRENT PASCAL." IEEE Trans.

on Software Engineering, vol. 1, no. 2, pp. 199-207.

* Brooks, F. P., Jr. 1975. The Mythical Man-Month: Essays on Software

Engineering. Reading, Mass.: Addison-Wesley.

Cooprider, L. W., Heymans, F.; Courtois, P. J.; and Parnas, D. L. 1974.

"Information Streams Sharing a Finite Buffer: Other Solutions."

Information Processing Letters, vol. 3, no. 1, pp. 16-21.

Courtois, P. J. 1975. "Decomposability, Instabilities, and Saturation in

Multiprogramuing Systems." Comm. ACM, vol. 18, no. 7, pp. 371-377.

---------- 1977. Decomposability: g.eueing and Computer System Applications.

New York: Academic Piess.

Courtois P. J.; Heymans, F.; and Parnas, D. L. 1971. "Concurrent Control

with 'Readers' and 'Writers."' Comm. ACM, vol. 14, no. 10, pp. 667-668.

* High , rocenmended reading

SOFTWARE ENGINEERING PRINCIPLES 16-1

14-25 July 1980

SEC. 16 / BIBLIOGRAPHY

* Dahl, 0. J.; Dijkstra, E. W.; and Hoare, C. A. R. 1972. Structured

Programming. London: Academic Press.

Daly, E. B. 1977. "Management of Software Development." IEEE Trans. on
Software Engineering, vol. SE-3, no. 3, pp. 229-242.

Department of Defense. 1978. Requirements for High Order Computer Programming
Language "Steelman."

* Dijkstra, E. W. 1968a. "Co-operating Sequential Processes." Programming

Languages, ed. F. Genuys. New York: Academic Press, pp. 43-112.

* ---------- 1968b. "The Structure of the "THE" Multiprogramming System."

Comm. ACM, vol. 11, no. 5, pp. 341-346.

- -- 1975. "Guarded Coimands, Nondeterminacy and Formal Derivation of

Programs." Com. ACM, vol. 18, no. 8, pp. 453-457.

1977. A Discipline of Programming. Englewood Cliffs:
Prentice-Hall.

Elson, M. 1973. Concepts of Programming Languages. Chicago: Science Research

Associates.

Endres, A. 1975. "An Analysis of Errors and Their Causes in Systems
Programs." Proceed. of the 1975 International Conf. on Reliable

Software, pp. 327-336.

Floyd, R. W. 1967. "Assigning Meanings to Programs." Proceed. Am. Math. Soc.

Symposia in Applied Mathematics, vol. 19, pp. 19-32.

* Gerhart, S.; and Yelowitz, L. 1976. "Observations of Fallibility in

Applications of Modern Programming Methodologies." IEEE Trans. on
Software Engineering, vol. SE-2, no. 3, pp. 195-207.

Goguen, J.; Thatcher, J.; Wagner, E.; and Wright, J. 1975. "Abstract
Data Types as Initial Algebras and the Correctness of Data

Representations." Proceed. of Conf. on Computer Graphics, Pattern

Recognition and Data Structure, pp. 89-93.

Gries, D. 1976. "An Illustration of Current Ideas on the Derivation of
Correctness Proofs and Correct Programs." IEEE Trans. on Software
Engineering, vol. SE-2, no. 4, pp. 238-244; Correction (May 1977),
p. 262.

* Highly recomnended rpading

16-2 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Bibliography /Doc. BIB.1

Guttag, J. V. 1975. The Specification and Application to Programming of

Abstract Data Types. University of Toronto Computer Systems Research
Group Technical Report CSRG-59.

1977. "Abstract Data Types and the Development of Data
Structures." Comm. ACM, vol. 20, no. 6, pp. 396-404.

---------- 1980. "Notes on Type Abstraction (Version 2)." IEEE Trans. on
Software Engineering, vol. SE-6, no. 1, pp. 13-23.

Guttag, J. V.; and Horowitz, E. 1978. "Abstract Data Types and Software
Validation." Comm. ACM, vol. 21, no. 12, pp. 1048-1064.

Habermann, A. N. 1969. "Prevention of System Deadlocks." Comm. ACM, vol. 12,
no. 7, pp. 373-377, 385.

* ---------- 1972. "Synchronization of Communicating Processes." Comm. ACM,

vol. 15, no. 3, pp. 171-176.

Heitmeyer, C. L.; and Wilson, S. H. 1980. "Military Message Systems: Current

Status and Future Directions." IEEE Trans. on Communications, to be
published.

* Heninger, K. L. 1980. "Specifying Software Requirements for Complex Systems:

New Techniques and Their Application." Trans. on Software Engineering,
vol. SE-6, no. 1, pp. 2-13.

Heninger, K. L.; Kallandar, J.; Parnas, D. L.; and Shore, J. E. 1978.

Software Requirements for the A-7E Aircraft. Naval Research Laboratory
Memorandum Report no. 3876.

Hoare, C. A. R. 1969. "An Axiomatic Basis for Computer Programming." Comm.

ACM, vol. 12, no. 10, pp. 576-583.

---------- 1974. "Monitors: An Operating System Structuring Concept." CoMm.
ACM, vol. 17, no. 10, pp. 549-557.

James, V. E. 1975. "Encouraging Use of Reference Documentation." Journal of

Systems Management, pp. 32-33.

Jensen, K.; and Wirth, N. 1974. Pascal User Manual and Report. 2nd ed. New

York: Springer-Verlag.

Kaiser, C.; Krakowiak, S. 1974. "An Analysis of Some Run-Time Errors in an

Operating System." IRIA Rapport de Recherche, no. 49.

* Highly recommended reading

SOFTWARE ENGINEERING PRINCIPLES 16-3

14-25 July 1980 r

SEC. 16 / BIBLIOGRAPHY

Kernighan, B. W.; and Plauger, P. J. 1976. Software Tools. Reading, Mass.:
Addison-Wesley.

---------- 1978. The Elements of Programming Style. 2nd ed. New York:
McGraw-Hill.

* Knuth, D. E. 1974. "Structured Programming With Go To Statements." Computing

Surveys, vol. 6, no. 4, pp. 261-301.

Kosy, D. W.; and Farquhar, J. A. 1972. Information Processing/Data
Automation Implications of Air Force Command and Control Requirements in
the 1980s (CCIP-85) -- Technology Trends: Software. Vol. IV of the Air
Force Systems Command Development Planning Study Report.

Linden, T. A. 1976. "The Use of Abstract Data Types to Simplify Program
Modifications." Proceed. of Conf. on Data: Abstraction, Definition and
Structure, SIGPLAN Notices, Special Issue, vol. 11, pp. 12-23.

Liskov, B.; and Berzins, V. 1977. "An Appraisal of Program Specifications."
Massachusetts Institute of Technology Computation Structures Group Memo
141-1.

Liskov, B.; Snyder, A.; Atkinson, R.; and Schaffert, C. 1977. "Abstraction
Mechanisms in CLU." Comm. ACM, vol. 20, no. 8, pp. 564-576.

Liskov, B.; and Zilles, S. 1974. "Programming with Abstract Data Types,"
SIGPLAN Notices, vol. 9, no. 4, pp. 50-59.

---------- 1975. "Specification Techniques for Data Abstractions." IEEE
Trans. on Software Engineering, vol. SE-1, no. 1, pp. 7-19.

Mills, H. D. 1971. Chief Programmer Teams: Principles and Procedures. IBM
Federal Systems Division Report no. FSC 71-5108.

---------- 1972. Mathematical Foundations for Structured Programming. IBM
Federal Systems Division Report no. FSC 72-6012, pp. 225-238.

---------- 1975. "How to Write Correct Programs and Know It." Proceed. 1975
Conf. on Reliable Software, IEEE Cat. no. 75CH0940-7CSR, pp. 363-370.

MIL-STD-1679. 1978. Weapon System Development.

Navy Manpower and Material Analysis Center, Pacific. 197 8 a. Navy Manpower
Planning System (NAMPS) Software Development Guidebook. NAVMMACPAC
Document no. GB-0l, rev. 0.

* Highly recommended reading

16-4 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Bibliography / Doc. BIB•I

- 1978b. Interim Navy Manpower Planning System (NAMPS): Functional
Description. NAVMACPAC Document no. FD-O1.

* Parker, A.; Heninger, K.; Parnas, D.; and Shore, J. 1980. Abstract Interface

Specifications for the A-7 Device Interface Modules. Naval Research
Laboratory Memorandum Report in production.

Parnas, D. L. 1971. "Information Distribution Aspects of Design Methodology."
Proceed, of IFIP Congress 71, pp. 339-344.

---------- 1972a. "A Technique for Software Module Specification with
Examples." Comm. ACM, vol. 15, no. 5, pp. 330-336.

*---------- 1972b. "On the Criteria To Be Used in Decomposing Systems into
Modules." Comm. ACM, vol. 15, no. 12, pp. 1053-1058.

---------- 1974. "On a 'Buzzword': Hierarchical Structure." Proceed. of IFIP
Congress 74, pp. 336-339.

---------- 1975a. "The Influence of Software Structure on Reliability."
Proceed. of the 1975 International Conf. on Reliable Software,
pp. 358-362.

----------. 1975b. "On the Solution to the Cigarette Smoker's Problem
(Without Conditional Statements)." Comm. ACM, vol. 18, no. 3,
pp. 181-183.

---------- 197 6 a. "On the Design and Development of Program Families."

IEEE Trans. on Software Engineering, vol. SE-2, no. 1, pp. 1-9.

----------. 1976b. Some Hypotheses about the 'Uses' Hierarchy for Operating

Systems. Technical Report. Darmstadt, W. Germany: Technische Hochschule
Darmstadt.

*---------- 1977a. Use of Abstract Interfaces in the Development of Software

for Embedded Computer Systems. Naval Research Laboratory Report no. 8047.

----------. 1977b. "The Use of Precise Specifications in the Development of

Software." Proceed. of the IFIP 1977, pp. 861-867.

* ---------- 1979. "Designing Software for Ease of Extension and Contraction."

IEEE Trans. on Software Engineering, vol. SE-5, no. 2, pp. 128-137.

Parnas, D. L.; and Bartussek, W. 1977. Using Traces to Write Abstract

Specifications for Software Modules. University of North Carolina Report
no. TR 77012.

* Highly recommended reading

SOFTWARE ENGINEERING PRINCIPLES 16-5
14-25 July 1980

[~ ~~SEC. 16 /BIBLIOGRAPHY __________________

Parnas, D. L.; Bartussek, W.; Handzel, G.; and waerges, H. 1976.
Predicate Transformers to Verify the Effects of "Real" Programs.
University of North Carolina Report no. TR-76-101.

Parnas, D. L.; and Handzel, C. 1975. More on Specification Techniques for

Software Modules. Fachbereich Informatik, Technische Hochschule
Darmstadt.

Parnas, D. L.; Shore, J. E.; and Elliot, W. D. 1975. On the Need for Fewer

Restrictions in Changing Compile-Time Environments. Naval Research
Laboratory Report no. 7847.

Parnas, D. L.; Shore, J. E.; and Weiss, D. M. 1176. "Abstract Types Defined
as Classes of Variables." Proceed. of Conf. on Data: Abstraction,
Definition and Structure. SIGPLAN Notices, Special Issue, vol. 11,
pp. 149-154. Also Naval Research Laboratory Report no. 7998.

* Parnas, D. L.; and Wuerges, H. 1976. "Response to Undesired Events in

Software Systems." Proceed. of Second International Conf. on Software
Engineering, pp. 437-446.

Patil, S. 1971. Limitations and Capabilities of Dijkstra's Semaphore
Primitives for Coordination Among Processes. Proj. MAC, Computational
Structures Group Memo 57.

Randell, B.; Lee, P. A.; and Treleaven, P. C. 1978. "Reliability Issues in

Computer System Design." Computing Surveys, vol. 10, no. 2, pp. 123-165.

Satterthwaite, E. 1972. "Debugging Tools for High-Level Languages."

Software -- Practice and Experience, vol. 2, no. 3, pp. 197-217.

Shaw, A. C. 1974. The Logical Design of Operating Systems. Englewood Cliffs:
Prentice-Hall.

Tucker, A. E. 1975. "The Correlation of Computer Programming with Test

Effort." System Development Corp. TM-221900, pp. 1-36.

* Turski, W. M. 1978. Computer Programming tetliodology. London: Heyden.

* Weinberg, G. M. 1971. The Psychology of Computer Programming. New York:
Van Nostrand.

Wirth, N. 197 7a. "MODULA: A Language for Modular Multiprogranming." Software
-- Practice and Experience, vol. 7, no. 1, pp. 3-35.

-----------. 1977b. "The Use of MODULA." Software -- Practice and Experience,
vol. 7, no. 1, pp. 37-65.

* Highly recommended reading

16-6 SOFTWARE ENGINEERING PRINCIPLES
14-25 July 1980

Bibliography / Doc. BIB.I

- - -1977c. "Design and Implementation of MODULA." Software --
Practice and Experience, vol. 7, no. 1, pp. 67-84.

-- 1977d. "Towards a Discipline of Real-Time Programming." Comm.

ACM, vol. 20, no. 8, pp. 577-583.

Wolverton, R. W. 1974. "The Cost of Developing Large-Scale Software." IEEE

Trans. on Computers, vol. C-23, no. 6, pp. 615-636.

SOFTWARE ENGINEERING PRINCIPLES 16-7

14-25 July 1980

~'AT

